137
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Machine learning-based assessment of hygrothermal aging performance in CFRP-aluminum alloy adhesive bonded structures

, , &
Pages 1040-1065 | Received 24 Jul 2023, Accepted 24 Oct 2023, Published online: 22 Nov 2023

References

  • Sarfraz, M. S.; Hong, H.; Kim, S. S. Recent Developments in the Manufacturing Technologies of Composite Components and Their Cost-Effectiveness in the Automotive Industry: A Review Study. Compos. Struct. 2021, 266, 113864. DOI: 10.1016/j.compstruct.2021.113864.
  • Monticeli, F. M.; Fuga, F. R.; Donadon, M. V. A Systematic Review on Translaminar Fracture Damage Propagation in Fiber-Reinforced Polymer Composites. Thin-Walled Struct. 2023, 187, 110742. DOI: 10.1016/j.tws.2023.110742.
  • Hou, Y.; Wang, W.; Meng, L.; Sapanathan, T.; Li, J.; Xu, Y. An Insight into the Mechanical Behavior of Adhesively Bonded Plain-Woven-Composite Joints Using Multiscale Modeling. Int. J. Mech. Sci. 2022, 219, 107063. DOI: 10.1016/j.ijmecsci.2022.107063.
  • Ramírez, F. M. G.; de Moura, M. F. S. F.; Moreira, R. D. F.; Silva, F. G. A. A Review on the Environmental Degradation Effects on Fatigue Behaviour of Adhesively Bonded Joints. Fatigue Fract. Eng. Mater. Struct. 2020, 43(7), 1307–1326. DOI: 10.1111/ffe.13239.
  • Zhang, M.; Sun, B.; Gu, B. Accelerated Thermal Ageing of Epoxy Resin and 3-D Carbon Fiber/Epoxy Braided Composites. Composites Part a. Compos. Part A Appl. Sci. Manuf. 2016, 85, 163–171. DOI: 10.1016/j.compositesa.2016.03.028.
  • Zavatta, N.; Rondina, F.; Falaschetti, M. P.; Donati, L. Effect of Thermal Ageing on the Mechanical Strength of Carbon Fibre Reinforced Epoxy Composites. Polymers. 2021, 13(12), 2006. DOI: 10.3390/polym13122006.
  • Zheng, G.; Wang, H.; Han, X.; Li, W. Mechanical Behavior of AL/CFRP Single-Lap Joint Subjected to Combined Thermal and Constant Loading. J. Adhes. 2021, 97(4), 361–379. DOI: 10.1080/00218464.2019.1667237.
  • Wang, M.; Xu, X.; Ji, J.; Yang, Y.; Shen, J.; Ye, M. The Hygrothermal Aging Process and Mechanism of the Novolac Epoxy Resin. Compos. B Eng. 2016, 107, 1–8. DOI: 10.1016/j.compositesb.2016.09.067.
  • Uthaman, A.; Xian, G.; Thomas, S.; Wang, Y.; Zheng, Q.; Liu, X. Durability of an Epoxy Resin and Its Carbon Fiber-Reinforced Polymer Composite Upon Immersion in Water, Acidic, and Alkaline Solutions. Polymers. 2020, 12(3), 614. DOI: 10.3390/polym12030614.
  • Mu, W.; Na, J.; Wang, G.; Tan, W.; Xu, Q.; Feng, Y. Rapid Prediction Method of Failure Load for Hygrothermally Aged CFRP – Aluminum Alloy Single Lap Joints. Compos. Struct. 2020, 252, 112603. DOI: 10.1016/j.compstruct.2020.112603.
  • Mariam, M.; Afendi, M.; Majid, M. S. A.; Ridzuan, MJM.; Azmi, AI.; Sultan, MTH. Influence of Hydrothermal Ageing on the Mechanical Properties of an Adhesively Bonded Joint with Different Adherends. Compos. B Eng. 2019, 165, 572–585. DOI: 10.1016/j.compositesb.2019.02.032.
  • Ali, A. H.; Mohamed, H. M.; Benmokrane, B.; ElSafty, A.; Chaallal, O. Durability Performance and Long-Term Prediction Models of Sand-Coated Basalt FRP Bars. Compos. B Eng. 2019, 157, 248–258. DOI: 10.1016/j.compositesb.2018.08.065.
  • Starkova, O.; Gagani, A. I.; Karl, C. W.; Rocha, I. B. C. M.; Burlakovs, J.; Krauklis, A. E. Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers. 2022, 14(5), 907. DOI: 10.3390/polym14050907.
  • Plota, A.; Masek, A. Lifetime Prediction Methods for Degradable Polymeric Materials—A Short Review. Materials. 2020, 13(20), 4507. DOI: 10.3390/ma13204507.
  • Krauklis, A. E.; Karl, C. W.; Rocha, I. B. C. M.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A. I.; Starkova, O. Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers. 2022, 14(1), 216. DOI: 10.3390/polym14010216.
  • Ding, X.; Hou, X.; Xia, M.; Ismail, Y.; Ye, J. Predictions of Macroscopic Mechanical Properties and Microscopic Cracks of Unidirectional Fibre-Reinforced Polymer Composites Using Artificial Neural Network (ANN)[J]. Compos. Struct. 2022, 302, 116248
  • Shimamoto, K.; Akiyama, H. Estimating the Mechanical Residual Strength from IR Spectra Using Machine Learning for Degraded Adhesives. J. Adhes. 2022, 98(15), 2423–2445. DOI: 10.1080/00218464.2021.1978293.
  • Ramalho, G. M. F.; Lopes, A. M.; da Silva, L. F. M. Structural Health Monitoring of Adhesive Joints Using Lamb Waves: A Review. Struct. Contr. Hlth. 2022, 29(1), e2849. DOI: 10.1002/stc.2849.
  • Gu, Z.; Liu, Y.; Hughes, D. J.; Ye, J.; Hou, X. A Parametric Study of Adhesive Bonded Joints with Composite Material Using Black-Box and Grey-Box Machine Learning Methods: Deep Neuron Networks and Genetic Programming. Compos. Part B: Eng. 2021, 217, 108894. DOI: 10.1016/j.compositesb.2021.108894.
  • Freed, Y.; Salviato, M.; Zobeiry, N. Implementation of a Probabilistic Machine Learning Strategy for Failure Predictions of Adhesively Bonded Joints Using Cohesive Zone Modeling. Int. J. Adhes. Adhes. 2022, 118, 103226. DOI: 10.1016/j.ijadhadh.2022.103226.
  • Xu, D.; Liu, P. F.; Li, J. G.; Chen, Z. P. Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning[J]. Compos. Struct. 2019, 211, 351–363. DOI: 10.1016/j.compstruct.2018.12.051.
  • Baghaei, K. A.; Hadigheh, S. A. Durability Assessment of FRP-To-Concrete Bonded Connections Under Moisture Condition Using Data-Driven Machine Learning-Based Approaches. Compos. Struct. 2021, 2021, 114576. DOI: 10.1016/j.compstruct.2021.114576.
  • Na, J. X.; Mu, W. L.; Qin, G. F.; Tan, W.; Pu, L. Effect of Temperature on the Mechanical Properties of Adhesively Bonded Basalt FRP-Aluminum Alloy Joints in the Automotive Industry. Int. J. Adhes. Adhes. 2018, 85, 138–148. DOI: 10.1016/j.ijadhadh.2018.05.027.
  • NF EN ISO 527-2:2012. Plastics: determination of tensile properties, part 2: test conditions for moulding and extrusion plastics, 2012.
  • GB/T 228-2002. Metallic materials-Tensile testing at ambient temperature, 2002.
  • Mu, W. L.; Xu, Q. H.; Na, J.; Fan, Y.; Sun, Y.; Liu, Y. Investigating the Failure Behavior of Hygrothermally Aged Adhesively Bonded CFRP-Aluminum Alloy Joints Using Modified Arcan Fixture. Thin-Walled Struct. 2023, 182, 110303. DOI: 10.1016/j.tws.2022.110303.
  • Lopes, H.; Silva, S. P.; Machado, J. Application of Artificial Neural Networks to Predict Mechanical Behaviour of Cork-Rubber Composites. Neural. Comput. Appl. 2021, 33(20), 14069–14078. DOI: 10.1007/s00521-021-06048-w.
  • Zhang, H.; Zhang, L.; Liu, Z.; Qi, S.; Zhu, Y.; Zhu, P. Numerical Analysis of Hybrid (Bonded/Bolted) FRP Composite Joints: A Review. Compos. Struct. 2021, 262, 113606. DOI: 10.1016/j.compstruct.2021.113606.
  • Mu, W.; Qin, G.; Na, J.; Tan, W.; Liu, H.; Luan, J. Effect of Alternating Load on the Residual Strength of Environmentally Aged Adhesively Bonded CFRP-Aluminum Alloy Joints. Compos. B Eng. 2019, 168, 87–97. DOI: 10.1016/j.compositesb.2018.12.070.
  • Viana, G.; Costa, M.; Banea, M. D.; da Silva, L. A Review on the Temperature and Moisture Degradation of Adhesive Joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 231(5), 488–501. DOI: 10.1177/1464420716671503.
  • Han, X.; Crocombe, A. D.; Anwar, S. N. R.; Hu, P. The Strength Prediction of Adhesive Single Lap Joints Exposed to Long Term Loading in a Hostile Environment. Int. J. Adhes. Adhes. 2014, 55, 1–11. DOI: 10.1016/j.ijadhadh.2014.06.013.
  • Hou, Y.; Tie, Y.; Li, C.; Meng, L.; Sapanathan, T.; Rachik, M. On the Damage Mechanism of High-Speed Ballast Impact and Compression After Impact for CFRP Laminates. Compos. Struct. 2019, 229, 111435. DOI: 10.1016/j.compstruct.2019.111435.
  • ISO 4587: 2003. Adhesives - Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.