66
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Durability of the effectiveness of atmospheric plasma treatment applied to thermoplastic Styrene-Butadiene-Styrene (SBS) rubber

, , &
Received 01 Aug 2023, Accepted 04 Jan 2024, Published online: 11 Jan 2024

References

  • Rezaeian, I.; Zahedi, P.; Rezaeian, A. Rubber Adhesion to Different Substrates and Its Importance in Industrial Applications: A Review. J. Adhes. Sci. Technol. 2012, 26(6), 721–744. DOI: 10.1163/016942411X579975.
  • Ebnesajjad, S.; Ebnesajjad, C. Surface Treatment of Materials for Adhesive Bonding, 2nd ed.; Chadds Ford, PA, USA: William Andrew, 2014.
  • Romero Sánchez, M. D.; Pastor Blas, M. M.; Martín Martínez, J. M. Environmental Friendly Surface Treatments of Styrene–Butadiene–Styrene Rubber: Alternatives to the Solvent-Based Halogenation Treatment. Int. J. Adhes. Adhes. 2005, 25(1), 19–29. DOI: 10.1016/j.ijadhadh.2004.03.001.
  • Ruzafa-Silvestre, C.; Carbonell-Blasco, M. P.; Pérez-Limiñana, M. A.; Arán-Ais, F.; Orgilés-Calpena, E. Robotised Atmospheric Plasma Treatment to Improve the Adhesion of Vulcanised and Thermoplastic Rubber Materials for a More Sustainable Footwear. Int. J. Adhes. Adhes. 2021, 117, 103010. DOI: 10.1016/j.ijadhadh.2021.103010.
  • Penkov, O. V.; Khadem, M.; Lim, W.-S.; Kim, D.-E. A Review of Recent Applications of Atmospheric Pressure Plasma Jets for Materials Processing. J. Coat. Technol. Res. 2015, 12(2), 225–235. DOI: 10.1007/s11998-014-9638-z.
  • Thomas, M.; Mittal, K. L. Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion; Chadds Ford, PA, USA: John Wiley & Sons, 2013.
  • Kapica, R.; Tyczkowski, J.; Balcerzak, J.; Makowski, M.; Sielski, J.; Worwa, E. Enhancing Adhesive Joints Between Commercial Rubber (SBS) and Polyurethane by Low-Pressure Plasma Surface Modification. Int. J. Adhes. Adhes. 2019, 95, 102415. DOI: 10.1016/j.ijadhadh.2019.102415.
  • Tyczkowski, J.; Kierzkowska-Pawlak, H.; Sielski, J.; Krawczyk-Kłys, I. Low-Temperature Plasma Modification of Styrene–Butadiene Block Copolymer Surfaces for Improved Adhesion—A Kinetic Approach. Polymers. 2020, 12(4), 935. DOI: 10.3390/polym12040935.
  • Tyczkowski, J.; Krawczyk-Kłysb, I.; Kuberski, S.; Makowski, P. Chemical Nature of Adhesion: Plasma Modified Styrene–Butadiene Elastomer and Polyurethane Adhesive Joints. Eur. Polym. J. 2010, 46(4), 767–773. DOI: 10.1016/j.eurpolymj.2009.12.019.
  • Arikan, E.; Holtmannspötter, J.; Zimmer, F.; Hofmann, T.; Gudladt, H.-J. The Role of Chemical Surface Modification for Structural Adhesive Bonding on Polymers - Washability of Chemical Functionalization without Reducing Adhesion. Int. J. Adhes. Adhes. 2019, 95, 102409. DOI: 10.1016/j.ijadhadh.2019.102409.
  • Bozaci, E.; Sever, K.; Demir, A.; Seki, Y.; Sarikanat, M.; Ozdogan, E. Effect of the Atmospheric Plasma Treatment Parameters on Surface and Mechanical Properties of Jute Fabric. Fibers Polym. 2009, 10(6), 781–786. DOI: 10.1007/s12221-009-0781-6.
  • Carreira, C. A.; Silva, R. M.; Pinto, V. V.; Ferreira, M. J.; Sousa, F.; Silva, F.; Pereira, C. M. Atmospheric Plasma Surface Treatment of Styrene-Butadiene Rubber: Study of Adhesion and Ageing Effects. In Atmospheric Pressure Plasma Treatment of Polymers; Thomas, M. Mittal, K. L., (Eds.); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 315–328. DOI: 10.1002/9781118747308.ch12.
  • Schäfer, J.; Hofmann, T.; Holtmannspötter, J.; Frauenhofer, M.; Von Czarnecki, J.; Gudladt, H.-J. Atmospheric-Pressure Plasma Treatment of Polyamide 6 Composites for Bonding with Polyurethane. J. Adhes. Sci. Technol. 2015, 29(17), 1807–1819. DOI: 10.1080/01694243.2015.1037380.
  • Carbonell-Blasco, M. P.; Ruzafa-Silvestre, C.; Mateu-Romero, B.; Orgilés-Calpena, E.; Arán-Ais, F. Cleaner Technologies to Minimise the Environmental Footprint of the Footwear Bonding Process. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 095440622211400. DOI: 10.1177/09544062221140053.
  • Arán-Ais, F.; Ruzafa-Silvestre, C.; Carbonell-Blasco, M.; Pérez-Limiñana, M.; Orgilés-Calpena, E. Sustainable Adhesives and Adhesion Processes for the Footwear Industry. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 235(3), 585–596. DOI: 10.1177/0954406220957706.
  • Kusano, Y. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review. J. Adhes. 2014, 90(9), 755–777. DOI: 10.1080/00218464.2013.804407.
  • Diener electronic GmbH + Co. KG. Plasma Technology, 4th; Diener electronic GmbH + Co. KG: Ebhausen, Germany, 2011.
  • ISO 4650. Rubber -Identification - Infrared Spectrometric Methods. 2012.
  • EN 828. Adhesives – Wettability – Determination by Measurement of Contact Angle and Surface Free Energy of Solid Surface. 2013.
  • Żenkiewicz, M. Methods for the Calculation of Surface Free Energy of Solids. J. Achiev. Mater. Manuf. Eng. 2007, 24.
  • EN 1392. Adhesives for Leather and Footwear Materials-Solvent-Based and Dispersion Adhesives-Testing of Bond Strength Under Specified Conditions. 2007.
  • Smith, B. C. The Infrared Spectra of Polymers IV: Rubbers. Spectroscopy. 2022, 2022, 8–12. DOI: https://doi.org/10.56530/spectroscopy.mz6968v1.
  • Kostov, K.; Nishime, T.; Castro, A.; Toth, A.; Hein, L. Surface Modification of Polymeric Materials by Cold Atmospheric Plasma Jet. Appl. Surf. Sci. 2014, 314, 367–375. DOI: 10.1016/j.apsusc.2014.07.009.
  • Pastor-Blas, M. M.; Ferrándiz-Gómez, T. P.; Martín-Martínez, J. M. Assessment of the Locus of Failure of Oxygen Plasma-Treated Rubber/Polyurethane Adhesive Joints Using XPS and IRATR Spectroscopy. Surf. Interface Anal. 2000, 30(1), 7–11. DOI: 10.1002/1096-9918(200008)30:1<7:AID-SIA711>3.0.CO;2-T.
  • Krawczyk-Kłys, I.; Makowski, P.; Wójcik, J.; Tyczkowski, J. Plasma Surface Modification of Commercial SBS Rubbers for Enhanced Adhesive Bonding. Mater. Sci. 2012, 18(2), 132–137. DOI: 10.5755/j01.ms.18.2.1914.
  • Žigon, J.; Saražin, J.; Šernek, M.; Kovač, J.; Dahle, S. The Effect of Ageing on Bonding Performance of Plasma Treated Beech Wood with Urea-Formaldehyde Adhesive. Cellulose. 2021, 28(4), 2461–2478. DOI: 10.1007/s10570-021-03687-z.
  • Sundriyal, P.; Pandey, M.; Bhattacharya, S. Plasma-Assisted Surface Alteration of Industrial Polymers for Improved Adhesive Bonding. Int. J. Adhes. Adhes. 2020, 101, 102626. DOI: 10.1016/j.ijadhadh.2020.102626.
  • Sun, C.; Min, J.; Lin, J.; Wan, H. Effect of Atmospheric Pressure Plasma Treatment on Adhesive Bonding of Carbon Fiber Reinforced Polymer. Polymers. 2019, 11(1), 139. DOI: 10.3390/polym11010139.
  • Petersen, S. Low-Pressure Plasma Treated Polyetheretherketone for Biomedical Application- a Comparative Study on Surface Chemistry and Storage Stability. ABEB. 2020, 4(3), 3. DOI: https://doi.org/10.33552/ABEB.2020.04.000588.
  • Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022, 31(10), 103001. DOI: 10.1088/1361-6595/ac70f9.
  • Ceria, A.; Rombaldoni, F.; Rovero, G.; Mazzuchetti, G.; Sicardi, S. The Effect of an Innovative Atmospheric Plasma Jet Treatment on Physical and Mechanical Properties of Wool Fabrics. J. Mater. Proc. Technol. 2010, 210(5), 720–726. DOI: 10.1016/j.jmatprotec.2009.12.006.
  • Pillai, R. R.; Thomas, V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers (Basel). 2023, 15(2), 400. DOI: 10.3390/polym15020400.
  • Ondiek, W.; Kondo, M.; Adachi, M.; Macadre, A.; Goda, K. Effect of Surface Coating and Plasma Treatment on Mechanical Properties of Wood Plastic Composites. J. Compos. Sci. 2023, 7(7), 296. DOI: 10.3390/jcs7070296.
  • Jang, Y.; Nabae, H.; Suzumori, K. Effects of Surface Roughness on Direct Plasma Bonding Between Silicone Rubbers Fabricated with 3D-Printed Molds. ACS Omega. 2022, 7(49), 45004–45013. DOI: 10.1021/acsomega.2c05308.
  • Iqbal, M.; Dinh, D. K.; Abbas, Q.; Imran, M.; Sattar, H.; Ul Ahmad, A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces. 2019, 2(2), 349–371. DOI: 10.3390/surfaces2020026.
  • Baniya, H. B.; Guragain, R. P.; Baniya, B.; Subedi, D. P. Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene. Int. J. Polym. Sci. 2020, 2020, 1–9. DOI: 10.1155/2020/3860259.
  • López-García, J. Wettability Analysis and Water Absorption Studies of Plasma Activated Polymeric Materials. In Non-Thermal Plasma Technology for Polymeric Materials; Elsevier: 2019; pp. 261–285. DOI: 10.1016/B978-0-12-813152-7.00010-X.
  • López-García, J. Chapter 10 - Wettability Analysis and Water Absorption Studies of Plasma Activated Polymeric Materials. In Non-Thermal Plasma Technology for Polymeric Materials; Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P. Praveen, K. M., Eds.; Elsevier: 2019; pp. 261–285. DOI: 10.1016/B978-0-12-813152-7.00010-X.
  • Dong, S.; Guo, P.; Chen, Y.; Chen, G.; Ji, H.; Ran, Y.; Li, S.; Chen, Y. Surface Modification via Atmospheric Cold Plasma (ACP): Improved Functional Properties and Characterization of Zein Film. Ind. Crops Prod. 2018, 115, 124–133. DOI: 10.1016/j.indcrop.2018.01.080.
  • Rezaei, F.; Dickey, M. D.; Bourham, M.; Hauser, P. J. Surface Modification of PET Film via a Large Area Atmospheric Pressure Plasma: An Optical Analysis of the Plasma and Surface Characterization of the Polymer Film. Surf. Coat. Technol. 2017, 309, 371–381. DOI: 10.1016/j.surfcoat.2016.11.072.
  • Dong, X.; Ritts, A. C.; Staller, C.; Yu, Q.; Chen, M.; Wang, Y. Evaluation of Plasma Treatment Effects on Improving Adhesive/Dentin Bonding by Using the Same Tooth Controls and Varying Cross-Sectional Surface Areas. Eur. J. Oral Sci. 2013, 121(4), 355–362. DOI: 10.1111/eos.12052.
  • Ciardiello, R.; D’Angelo, D.; Cagna, L.; Croce, A.; Paolino, D. S. Effects of Plasma Treatments of Polypropylene Adhesive Joints Used in the Automotive Industry. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236(11), 6204–6218. DOI: 10.1177/09544062211065361.
  • Tyczkowski, J.; Balcerzak, J.; Sielski, J.; Krawczyk-Kłys, I. Effect of Carbon Black Nanofiller on Adhesion Properties of SBS Rubber Surfaces Treated by Low-Pressure Plasma. Polymers. 2020, 12(3), 616. DOI: 10.3390/polym12030616.
  • Adhesive Bonding Technology Supports Circular Economy and Life Cycle Assessments - Fraunhofer IFAM. https://www.ifam.fraunhofer.de/en/Press_Releases/adhesive_bonding_circular_economy.html (accessed Jun 21, 2021).
  • Orgilés-Calpena, E.; Arán-Aís, F.; Torró-Palau, A. M.; Sánchez, M. A. M. Adhesives in the Footwear Industry: A Critical Review. Rev. Adhes. Adhes. 2019, 7(1), 69–91. DOI: 10.7569/RAA.2019.097303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.