68
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Adhesion characteristics of plasma-treated flax fabrics and elastoplastic properties of their biocomposites

ORCID Icon, , &
Received 22 Sep 2023, Accepted 12 Feb 2024, Published online: 20 Feb 2024

References

  • Bolton, J. The Potential of Plant Fibres as Crops for Industrial Use. Outlook Agric. 1995, 24(2), 85–89. DOI: 10.1177/003072709502400204.
  • Robson, D.; Hague, J.; Newman, G. Survey of Natural Materials for Use in Structural Composites as Reinforcement and Matrices; Biocomposites Centre, University of Wales: Wales, UK, 1993.
  • Eichhorn, S.; Baillie, C.; Zafeiropoulos, N.; Mwaikambo, L. Y.; Ansell, M. P.; Dufresne, A.; Entwistle, K. M.; Herrera-Franco, P. J.; Escamilla, G. C.; Groom, L., et al. Current International Research into Cellulosic Fibres and Composites. J. Mater. Sci. 2001, 36(9), 2107–2131.
  • Bahrami, M.; Abenojar, J.; MÁ, M. Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials. 2020, 13(22), 5145. DOI: 10.3390/ma13225145.
  • Le Duigou, A.; Davies, P.; Baley, C. Environmental Impact Analysis of the Production of Flax Fibres to Be Used as Composite Material Reinforcement. J. Biobased Mat. Bioenergy. 2011, 5(1), 153–165. DOI: 10.1166/jbmb.2011.1116.
  • Pervaiz, M.; Sain, M. M. Carbon Storage Potential in Natural Fiber Composites. Resour. Conserv. Recycl. 2003, 39(4), 325–340. DOI: 10.1016/S0921-3449(02)00173-8.
  • Suter, P. J.; Schlichtherle, H. Pfahlbauten: UNESCO Welterbe-Kandidatur “Prähistorische Pfahlbauten rund um die Alpen”= Palafittes: candidature au Patrimoine mondial de l’UNESCO “Sites et palafittiques préhistoriques autour des Alpes”; Archäologischer Dienst des Kantons Bern: Bern, Switzerland, 2009.
  • Maier, U.; Schlichtherle, H. Flax Cultivation and Textile Production in Neolithic Wetland Settlements on Lake Constance and in Upper Swabia (South-West Germany). Veg. History Archaeobot. 2011, 20(6), 567–578. DOI: 10.1007/s00334-011-0300-8.
  • Boulos, L.; Foruzanmehr, M. R.; Tagnit-Hamou, A. Wetting Analysis and Surface Characterization of Flax Fibers Modified with Zirconia by Sol-Gel Method. Surf. Coat. Technol. 2017, 313, 407–416. DOI: 10.1016/j.surfcoat.2017.02.008.
  • Yasuda, H. K. Plasma Polymerization; Houghton Mifflin Harcourt Publishing: Boston, MA, United States, 2012.
  • Wolf, R. A. Atmospheric Pressure Plasma for Surface Modification; John Wiley & Sons: Hoboken, New Jersey, 2012.
  • Sun, D. Surface Modification of Natural Fibers Using Plasma Treatment. Biodegradable Green Compos. 2016, 1, 18–39.
  • Encinas, N.; Dillingham, R.; Oakley, B. Atmospheric Pressure Plasma Hydrophilic Modification of a Silicone Surface. J. Adhes. 2012, 88(4–6), 321–336.
  • Encinas, N.; Abenojar, J.; Martínez, M. Development of Improved Polypropylene Adhesive Bonding by Abrasion and Atmospheric Plasma Surface Modifications. Int. J. Adhes. Adhes. 2012, 33, 1–6. DOI: 10.1016/j.ijadhadh.2011.10.002.
  • Martinez, M. A.; Abenojar, J.; Enciso, B.; Velasco, F. J. Effect of Atmospheric Plasma Torch on Ballistic Woven Aramid. Text. Res. J. 2017, 87(19), 2358–2367. DOI: 10.1177/0040517516671122.
  • Kim, H.-J.; Jayasena, D. D.; Yong, H. I.; Alahakoon, A. U.; Park, S.; Park, J.; Choe, W.; Jo, C. Effect of Atmospheric Pressure Plasma Jet on the Foodborne Pathogens Attached to Commercial Food Containers. J. Food Sci. Technol. 2015, 52(12), 8410–8415. DOI: 10.1007/s13197-015-2003-0.
  • Ranjha, M. M. A. N.; Shafique, B.; Aadil, R. M., Manzoor, M F., Cheng, J-H. Modification in Cellulose Films Through Ascent Cold Plasma Treatment and Polymerization for Food Products Packaging. Trends Food Sci. Technol. 2023, 134, 162–176. DOI: 10.1016/j.tifs.2023.03.011.
  • Sani, I. K.; Aminoleslami, L.; Mirtalebi, S. S.; Sani, M. A.; Mansouri, E.; Eghbaljoo, H.; Jalil, A. T.; Thanoon, R. D.; Khodaei, S. M.; Mohammadi, F., et al. Cold Plasma Technology: Applications in Improving Edible Films and Food Packaging. Food Pack. Shelf Life. 2023, 37, 101087. DOI: 10.1016/j.fpsl.2023.101087.
  • Tiwari, S.; Bijwe, J. Surface Treatment of Carbon Fibers-A Review. Procedia Technol. 2014, 14, 505–512. DOI: 10.1016/j.protcy.2014.08.064.
  • de Armentia, S. L.; Enciso, B.; Mokry, G.; Abenojar, J.; Martinez, M. A. Novel Application of a Thermoplastic Composite with Improved Matrix-Fiber Interface. J. Mater. Res. Technol. 2019, 8(6), 5536–5547. DOI: 10.1016/j.jmrt.2019.09.022.
  • Bahrami, M.; Enciso, B.; Gaifami, C. M.; Abenojar, J.; Martinez, M. A. Characterization of Hybrid Biocomposite Poly-Butyl-Succinate/carbon Fibers/Flax Fibers. Compos. Part B Eng. 2021, 221, 109033. DOI: 10.1016/j.compositesb.2021.109033.
  • Conrads, H.; Schmidt, M. Plasma Generation and Plasma Sources. Plasma Sour. Sci. Technol. 2000, 9(4), 441. DOI: 10.1088/0963-0252/9/4/301.
  • Jang, B. Z. Control of Interfacial Adhesion in Continuous Carbon and Kevlar Fiber Reinforced Polymer Composites. Compos. Sci. Technol. 1992, 44(4), 333–349. DOI: 10.1016/0266-3538(92)90070-J.
  • Sanchez, M. L.; Patino, W.; Cardenas, J. Physical-Mechanical Properties of Bamboo Fibers-Reinforced Biocomposites: Influence of Surface Treatment of Fibers. J. Build. Eng. 2020, 28, 101058. DOI: 10.1016/j.jobe.2019.101058.
  • Gleissner, C.; Landsiedel, J.; Bechtold, T. Surface Activation of High Performance Polymer Fibers: A Review. Polym. Rev. 2022, 62(4), 757–788.
  • Gieparda, W.; Rojewski, S.; Różańska, W. Effectiveness of Silanization and Plasma Treatment in the Improvement of Selected Flax fibers’ Properties. Materials. 2021, 14(13), 3564. DOI: 10.3390/ma14133564.
  • Özdoğan, E.; Karaca Uğural, B.; Demir, A.; Kurt, A. Effects of Alkaline and Atmospheric Plasma Treatments on Mechanical Properties and CO2 Emissions of Flax/Polypropylene Composites. J. Textile Inst. 2022, 114(4), 656–663. DOI: 10.1080/00405000.2022.2062141.
  • Leone, G.; D’Angelo, G. A.; Russo, P.; Ferraro, P.; Pagliarulo, V. Plasma treatment application to improve interfacial adhesion in polypropylene‐flax fabric composite laminates. Polym. Compos. 2022, 43(3), 1787–1798. DOI: 10.1002/pc.26497.
  • Pornwannachai, W.; Horrocks, A. R.; Kandola, B. K. Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites. Fibers. 2021, 10(1), 2. DOI: 10.3390/fib10010002.
  • Moradkhani, G.; Profili, J.; Robert, M.; Laroche, G.; Elkoun, S. Effects of Wet and Dry Treatments on Surface Functional Groups and Mechanical Properties of Flax Fiber Composites. Coatings. 2023, 13(6), 1036. DOI: 10.3390/coatings13061036.
  • Teraube, O.; Gratier, L.; Agopian, J.-C.; Pucci, M. F.; Liotier, P.-J.; Hajjar-Garreau, S.; Petit, E.; Batisse, N.; Bousquet, A.; Charlet, K., et al. Elaboration of Hydrophobic Flax Fibers Through Fluorine Plasma Treatment. Appl. Surf. Sci. 2023, 611, 155615. DOI: 10.1016/j.apsusc.2022.155615.
  • John, M. J. Biobased Alginate Treatments on Flax Fibre Reinforced PLA and PHBV Composites. Curr. Res. Green Sustainable Chem. 2022, 5, 100319. DOI: 10.1016/j.crgsc.2022.100319.
  • Pawłowska, A.; Stepczyńska, M.; Walczak, M. Flax Fibres Modified with a Natural Plant Agent Used as a Reinforcement for the Polylactide-Based Biocomposites. Ind. Crops Prod. 2022, 184, 115061. DOI: 10.1016/j.indcrop.2022.115061.
  • Akter, M.; Uddin, M. H.; Tania, I. S. Biocomposites Based on Natural Fibers and Polymers: A Review on Properties and Potential Applications. J. Reinf. Plast. Compos. 2022, 41(17–18), 705–742. DOI: 10.1177/07316844211070609.
  • Li, H.; Tang, R.; Dai, J. Recent Progress in Flax Fiber-Based Functional Composites. Adv. Fiber Mater. 2022, 4, 171–184.
  • Offringa, A. R. Thermoplastic Composites—Rapid Processing Applications. Compos. Part A Appl. Sci. Manuf. 1996, 27(4), 329–336. DOI: 10.1016/1359-835X(95)00048-7.
  • Chen, G.; Li, S.; Jiao, F.; Yuan, Q. Catalytic Dehydration of Bioethanol to Ethylene Over TiO2/γ-Al2O3 Catalysts in Microchannel Reactors. Catal. Today. 2007, 125(1–2), 111–119. DOI: 10.1016/j.cattod.2007.01.071.
  • Dolza, C.; Fages, E.; Gonga, E.; Gomez-Caturla, J.; Balart, R.; Quiles-Carrillo, L. Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding. Polymers. 2021, 13(11), 1692. DOI: 10.3390/polym13111692.
  • Vasile, C.; Râpă, M.; Ştefan, M.; Stan, M.; Macavei, S.; Darie-Nita, R. N.; Barbu-Tudoran, L.; Vodnar, D. C.; Popa, E. E.; Stefan, R., et al. New PLA/ZnO: Cu/Ag Bionanocomposites for Food Packaging. Express Polym. Lett. 2017, 11(7), 531–544.
  • Robledo-Ortíz, J. R.; González-López, M. E.; Rodrigue, D.; Gutiérrez-Ruiz, J. F.; Prezas-Lara, F.; Pérez-Fonseca, A. A. Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. J. Polym. Environ. 2020, 28(3), 1040–1049. DOI: 10.1007/s10924-020-01667-1.
  • Enciso, B.; Abenojar, J.; Martínez, M. A. Effect of APPT Treatment on Mechanical Properties and Durability of Green Composites with Woven Flax. Materials. 2020, 13(21), 4762. DOI: 10.3390/ma13214762.
  • de Castro, B. D.; Fotouhi, M.; Vieira, L. M. G.; de Faria, P. E.; Campos Rubio, J. C. Mechanical Behaviour of a Green Composite from Biopolymers Reinforced with Sisal Fibres. J. Polym. Environ. 2021, 29(2), 429–440. DOI: 10.1007/s10924-020-01875-9.
  • Le Duigou, A.; Bourmaud, A.; Gourier, C.; Baley, C. Multi-Scale Shear Properties of Flax Fibre Reinforced Polyamide1 Biocomposites. Compos. Part A Appl. Sci. Manuf. 2016, 85, 123–129. DOI: 10.1016/j.compositesa.2016.03.014.
  • Niaounakis, M. Biopolymers: Applications and Trends; William Andrew: Oxford, UK, 2015.
  • Dang, P.; Werth, M.; Marchioni, R. Thermoplastic Materials in Oil and Gas Applications: 30 Years Experience with Polyamide1 from Offshore Production to Onshore Distribution. 2004.
  • Bahrami, M.; Abenojar, J.; Martínez, M. A. Comparative Characterization of Hot-Pressed Polyamide1 and2: Mechanical, Thermal and Durability Properties. Polymers. 2021, 13(20), 3553. DOI: 10.3390/polym13203553.
  • Devaux, J.-F.; Lê, G.; Pees, B. Application of Eco-Profile Methodology to Polyamide1. Arkema Colombes France. 2011, 11.
  • Lebaupin, Y.; Chauvin, M.; Hoang, T.-Q.; Touchard, F.; Beigbeder, A. Influence of Constituents and Process Parameters on Mechanical Properties of Flax Fibre-Reinforced Polyamide1 Composite. J. Thermoplast. Compos. Mater. 2017, 30(11), 1503–1521. DOI: 10.1177/0892705716644669.
  • Russo, P.; Simeoli, G.; Vitiello, L.; Filippone, G. Bio-Polyamide1 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications. Fibers. 2019, 7(5), 41. DOI: 10.3390/fib7050041.
  • Bahrami, M.; Mehdikhani, M.; Swolfs, Y., Eds. Impact Properties of Flax-Carbon Hybrid Composites Under Low-Velocity Impact. Proceedings of the 20th European Conference on Composite Materials (ECCM20), Lausanne, Switzerland; 2022.
  • Oliver-Ortega, H.; Méndez, J. A.; Mutjé, P.; Tarrés, Q.; Espinach, F.; Ardanuy, M. Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide1 Based Composites Reinforced with Lignocellulosic Fibres. Polymers. 2017, 9(12), 522. DOI: 10.3390/polym9100522.
  • Sallem-Idrissi, N.; Van Velthem, P.; Sclavons, M. Fully Bio-Sourced Nylon1/Raw Lignin Composites: Thermal and Mechanical Performances. J. Polym. Environ. 2018, 26(12), 4405–4414. DOI: 10.1007/s10924-018-1311-7.
  • Oksman, K.; Skrifvars, M.; Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63(9), 1317–1324. DOI: 10.1016/S0266-3538(03)00103-9.
  • Liu, L.; Yu, J.; Cheng, L.; Yang, X. Biodegradability of Poly (Butylene Succinate)(pbs) Composite Reinforced with Jute Fibre. Polym. Degrad. Stab. 2009, 94(1), 90–94. DOI: 10.1016/j.polymdegradstab.2008.10.013.
  • Feng, Y.-H.; Zhang, D.-W.; Qu, J.-P.; He, H.-Z.; Xu, B.-P. Rheological properties of sisal fiber/poly (butylene succinate) composites. Polym. Test. 2011, 30(1), 124–130. DOI: 10.1016/j.polymertesting.2010.11.004.
  • Liu, L.; Yu, J.; Cheng, L.; Qu, W. Mechanical Properties of Poly (Butylene Succinate)(pbs) Biocomposites Reinforced with Surface Modified Jute Fibre. Compos. Part A Appl. Sci. Manuf. 2009, 40(5), 669–674. DOI: 10.1016/j.compositesa.2009.03.002.
  • Pantaloni, D.; Shah, D.; Baley, C.; Bourmaud, A. Monitoring of Mechanical Performances of Flax Non-Woven Biocomposites During a Home Compost Degradation. Polym. Degrad. Stab. 2020, 177, 109166. DOI: 10.1016/j.polymdegradstab.2020.109166.
  • Feng, Y.-H.; Li, Y.-J.; Xu, B.-P.; Zhang, D.-W.; Qu, J.-P.; He, H.-Z. Effect of Fiber Morphology on Rheological Properties of Plant Fiber Reinforced Poly (Butylene Succinate) Composites. Compos. Part B Eng. 2013, 44(1), 193–199. DOI: 10.1016/j.compositesb.2012.05.051.
  • Mochane, M. J.; Magagula, S. I.; Sefadi, J. S.; Mokhena, T. C. A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS). Polymers. 2021, 13(8), 1200. DOI: 10.3390/polym13081200.
  • Owens, D. Some Thermodynamic Aspects of Polymer Adhesion. J. Appl. Polym. Sci. 1970, 14(7), 1725–1730. DOI: 10.1002/app.1970.070140706.
  • Owens, D. K.; Wendt, R. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13(8), 1741–1747. DOI: 10.1002/app.1969.070130815.
  • Heng, J. Y.; Pearse, D. F.; Thielmann, F.; Lampke, T.; Bismarck, A. Methods to Determine Surface Energies of Natural Fibres: A Review. Compos. Interfaces. 2007, 14(7–9), 581–604. DOI: 10.1163/156855407782106492.
  • Leyland, A.; Matthews, A. On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour. Wear. 2000, 246(1–2), 1–11. DOI: 10.1016/S0043-1648(00)00488-9.
  • Leyland, A.; Matthews, A. Design Criteria for Wear-Resistant Nanostructured and Glassy-Metal Coatings. Surf. Coat. Technol. 2004, 177-178, 317–324. DOI: 10.1016/j.surfcoat.2003.09.011.
  • Arora, G.; Pathak, H. Nanoindentation characterization of polymer nanocomposites for elastic and viscoelastic properties: Experimental and mathematical approach. Compos. Part C Open Access. 2021, 4, 100103. DOI: 10.1016/j.jcomc.2020.100103.
  • Gardner, S. D.; Singamsetty, C. S.; Booth, G. L.; He, G.-R.; Pittman, C. U. Surface Characterization of Carbon Fibers Using Angle-Resolved XPS and ISS. Carbon. 1995, 33(5), 587–595. DOI: 10.1016/0008-6223(94)00144-O.
  • Delpeux, S.; Beguin, F.; Benoit, R.; Erre, R.; Manolova, N.; Rashkov, I. Fullerene Core Star-Like Polymers—1. Preparation from Fullerenes and Monoazidopolyethers. Eur. Polym. J. 1998, 34(7), 905–915. DOI: 10.1016/S0014-3057(97)00225-5.
  • Prasad, V.; Sekar, K.; Joseph, M. Mechanical and Water Absorption Properties of Nano TiO2 Coated Flax Fibre Epoxy Composites. Constr. Build. Mater. 2021, 284, 122803. DOI: 10.1016/j.conbuildmat.2021.122803.
  • Vinod, T.; Chang, J.-H.; Kim, J.-K. Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles. Bull. Korean Chem. Soc. 2008, 29(4), 799–804.
  • Stypula, B.; Stoch, J. The Characterization of Passive Films on Chromium Electrodes by XPS. Corros. Sci. 1994, 36(12), 2159–2167. DOI: 10.1016/0010-938X(94)90014-0.
  • Dzhurinskii, B.; Gati, D.; Sergushin, N. Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides. Russ. J. Inorg. Chem. 1975, 20, 2307–2314.
  • Beccaria, A.; Poggi, G.; Castello, G. Influence of Passive Film Composition and Sea Water Pressure on Resistance to Localised Corrosion of Some Stainless Steels in Sea Water. Br. Corros. J. 1995, 30(4), 283–287. DOI: 10.1179/bcj.1995.30.4.283.
  • Enciso, B.; Abenojar, J.; Martínez, M. Influence of Plasma Treatment on the Adhesion Between a Polymeric Matrix and Natural Fibres. Cellulose. 2017, 24(4), 1791–1801. DOI: 10.1007/s10570-017-1209-x.
  • Abenojar, J.; Torregrosa-Coque, R.; Martínez, M. A.; Martín-Martínez, J. M. Surface Modifications of Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) Copolymer by Treatment with Atmospheric Plasma. Surf. Coat. Technol. 2009, 203(16), 2173–2180. DOI: 10.1016/j.surfcoat.2009.01.037.
  • Abenojar, J.; Barbosa, A.; Ballesteros, Y.; Del Real, J. C.; da Silva, L. F. M.; Martínez, M. A. Effect of Surface Treatments on Natural Cork: Surface Energy, Adhesion, and Acoustic Insulation. Wood Sci. Technol. 2014, 48(1), 207–224. DOI: 10.1007/s00226-013-0599-7.
  • Gholami, M.; Ahmadi, M. S.; Tavanaie, M. A.; Khajeh Mehrizi, M. Effect of Oxygen Plasma Treatment on Tensile Strength of Date Palm Fibers and Their Interfacial Adhesion with Epoxy Matrix. Sci. Eng. Compos. Mater. 2018, 25(5), 993–1001. DOI: 10.1515/secm-2017-0102.
  • Fazeli, M.; Florez, J. P.; Simão, R. A. Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification. Compos. B Eng. 2019, 163, 207–216. DOI: 10.1016/j.compositesb.2018.11.048.
  • Spyrides, S. M. M.; Alencastro, F. S.; Guimaraes, E. F.; Bastian, F. L.; Simao, R. A. Mechanism of Oxygen and Argon Low Pressure Plasma Etching on Polyethylene (UHMWPE). Surf. Coat. Technol. 2019, 378, 124990. DOI: 10.1016/j.surfcoat.2019.124990.
  • Jelil, R. A. A Review of Low-Temperature Plasma Treatment of Textile Materials. J. Mater. Sci. 2015, 50(18), 5913–5943. DOI: 10.1007/s10853-015-9152-4.
  • Ramamoorthy, S. K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55(1), 107–162. DOI: 10.1080/15583724.2014.971124.
  • Bahrami, M.; Lavayen-Farfan, D.; Martínez, M.; Abenojar, J. Experimental and Numerical Studies of Polyamide1 and2 Surfaces Modified by Atmospheric Pressure Plasma Treatment. Surf. Interfaces. 2022, 32, 102154. DOI: 10.1016/j.surfin.2022.102154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.