52
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Experimental and numerical analysis of tensile properties in steel-timber bonded-screwed hybrid single-lap joints with different drilling directions

, &
Received 06 Nov 2023, Accepted 11 Mar 2024, Published online: 25 Mar 2024

References

  • Pastori, S.; Sergio Mazzucchelli, E.; Wallhagen, M. Hybrid Timber-Based Structures: A State of the Art Review. Constr. Build. Mater. 2022, 359, 129505. DOI: 10.1016/j.conbuildmat.2022.129505.
  • Karampour, H.; Bourges, M.; Gilbert, B. P.; Bismire, A.; Bailleres, H.; Guan, H. Compressive Behaviour of Novel Timber-Filled Steel Tubular (TFST) Columns. Constr. Build. Mater. 2020, 238, 117734. DOI: 10.1016/j.conbuildmat.2019.117734.
  • Wang, X.; Su, P.; Liu, J.; Chen, Z.; Khan, K. Seismic Performance of Light Steel-Natural Timber Composite Beam-Column Joint in Low-Rise Buildings. Eng. Struct. 2022, 256, 113969. DOI: 10.1016/j.engstruct.2022.113969.
  • Chen, Z.; Niu, X.; Liu, J.; Khan, K. Experimental Study of Thin-Walled Steel-Timber Single-Shear Connection with a Self-Tapping Screw. Structures. 2021, 34, 4389–4405. DOI: 10.1016/j.istruc.2021.10.028.
  • Hassanieh, A.; Valipour, H. R.; Bradford, M. A. Experimental and Numerical Study of Steel-timber Composite (STC) beams. J. Constr. Steel. Res. 2016, 122, 367–378. DOI: 10.1016/j.jcsr.2016.04.005.
  • Corradi, M.; Osofero, A. I.; Borri, A. Repair and Reinforcement of Historic Timber Structures with Stainless Steel—A Review. Metals. (Basel). 2019, 9(1), 106. DOI: 10.3390/met9010106.
  • Metelli, G.; Preti, M.; Giuriani, E. On the Delamination Phenomenon in the Repair of Timber Beams with Steel Plates. Constr. Build. Mater. 2016, 102, 1018–1028. DOI: 10.1016/j.conbuildmat.2015.09.038.
  • Franke, S.; Franke, B.; Harte, A. M. Failure Modes and Reinforcement Techniques for Timber Beams – State of the Art. Constr. Build. Mater. 2015, 97, 2–13. DOI: 10.1016/j.conbuildmat.2015.06.021.
  • Aloisio, A.; De Santis, Y.; Pelliciari, M.; Rosso, M. M.; Fragiacomo, M.; Tomasi, R. Buckling Capacity Model for Timber Screws Loaded in Compression: Experimental, Analytical and FE Investigations. Constr. Build. Mater. 2023, 379, 131225. DOI: 10.1016/j.conbuildmat.2023.131225.
  • De Santis, Y.; Fragiacomo, M. Timber-To-Timber and Steel-To-Timber Screw Connections: Derivation of the Slip Modulus via Beam on Elastic Foundation Model. Eng. Struct. 2021, 244, 112798. DOI: 10.1016/j.engstruct.2021.112798.
  • Ataei, A.; Chiniforush, A. A.; Bradford, M. A.; Valipour, H. R.; Ngo, T. D. Behaviour of Embedded Bolted Shear Connectors in Steel-Timber Composite Beams Subjected to Cyclic Loading. J. Build. Eng. 2022, 54, 104581. DOI: 10.1016/j.jobe.2022.104581.
  • Izzi, M.; Rinaldin, G.; Polastri, A.; Fragiacomo, M. A Hysteresis Model for Timber Joints with Dowel-Type Fasteners. Eng. Struct. 2018, 157, 170–178. DOI: 10.1016/j.engstruct.2017.12.011.
  • Tang, L.; Yang, H.; Crocetti, R.; Liu, J.; Shi, B.; Gustafsson, P. J.; Liu, W. Experimental and Numerical Investigations on the Hybrid Dowel and Bonding Steel Plate Joints for Timber Structures. Constr. Build. Mater. 2020, 265, 120847. DOI: 10.1016/j.conbuildmat.2020.120847.
  • Shi, B.; Yang, H.; Liu, J.; Crocetti, R.; Liu, W. Short- and Long-Term Performance of Bonding Steel-Plate Joints for Timber Structures. Constr. Build. Mater. 2020, 240, 117945. DOI: 10.1016/j.conbuildmat.2019.117945.
  • Hassanieh, A.; Valipour, H. R.; Bradford, M. A. Experimental and Numerical Investigation of Short-Term Behaviour of CLT-Steel Composite Beams. Eng. Struct. 2017, 144, 43–57. DOI: 10.1016/j.engstruct.2017.04.052.
  • Blass, H. J.; Schädle, P. Ductility Aspects of Reinforced and Non-Reinforced Timber Joints. Eng. Struct. 2011, 33(11), 3018–3026. DOI: 10.1016/j.engstruct.2011.02.001.
  • Wang, C.; Lyu, J.; Zhao, J.; Yang, H. Experimental Investigation of the Shear Characteristics of Steel-To-Timber Composite Joints with Inclined Self-Tapping Screws. Eng. Struct. 2020, 215, 110683. DOI: 10.1016/j.engstruct.2020.110683.
  • Yang, R.; Li, H.; Lorenzo, R.; Ashraf, M.; Sun, Y.; Yuan, Q. Mechanical Behaviour of Steel Timber Composite Shear Connections. Constr. Build. Mater. 2020, 258, 119605. DOI: 10.1016/j.conbuildmat.2020.119605.
  • Kyvelou, P.; Gardner, L.; Nethercot, D. A. Testing and Analysis of Composite Cold-Formed Steel and wood− Based Flooring Systems. J. Struct. Eng. 2017, 143(11), 04017146. DOI: 10.1061/(ASCE)ST.1943-541X.0001885.
  • Vella, N.; Gardner, L.; Buhagiar, S. Experimental Analysis of Cold-Formed Steel-To-Timber Connections with Inclined Screws. Structures. 2020, 24, 890–904. DOI: 10.1016/j.istruc.2020.02.009.
  • Zhang, A.; Liu, J.; Wang, J.; Chen, Z.; Li, Y. Experimental and Analytical Behaviour of Light Gauge Steel-Fast Growing Timber Composite Shear Connections. Struct. (Oxford). 2023, 47, 1691–1709. DOI: 10.1016/j.istruc.2022.12.006.
  • Dar, M. A.; Subramanian, N.; Dar, D. A.; Dar, A. R.; Anbarasu, M.; Lim, J. B.; Mahjoubi, S. Flexural Strength of Cold-Formed Steel Built-Up Composite Beams with Rectangular Compression Flanges. Steel. Comp. Struct. Inter. J.2020, 2, 34.
  • Loss, C.; Davison, B. Innovative Composite Steel-Timber Floors with Prefabricated Modular Components. Eng. Struct. 2017, 132, 695–713. DOI: 10.1016/j.engstruct.2016.11.062.
  • Kyvelou, P.; Reynolds, T. P. S.; Beckett, C. T. S.; Huang, Y. Experimental Investigation on Composite Panels of Cold-Formed Steel and Timber. Eng. Struct. 2021, 247, 113186. DOI: 10.1016/j.engstruct.2021.113186.
  • Kyvelou, P.; Gardner, L.; Nethercot, D. A. Design of Composite Cold-Formed Steel Flooring Systems. Structures. 2017, 12, 242–252. DOI: 10.1016/j.istruc.2017.09.006.
  • Johansen, K. W. Theory of Timber Connections. Inter. Assoc. Br. Struct. Eng.1949, 9, 249–262. Publication No
  • EN 1995-1-1. Eurocode 5: ‘Design of timber structures. Part 1-1: General – Common rules and rules for buildings’; European Committee for Standardisation, Brussels, 2004.
  • GB 50005-2017. Standard for Design of Timber Structures, Housing and Urban-Rural Development of the People’s Republic of China, 2017.
  • NDS-2018. National Design Specification for Wood Construction, 2018 ed.; American Wood Council: Leesburg, United States, 2017.
  • Winkler, E. Die Lehre von der Elasticitaet und Festigkeit; Dominicus, 1867.
  • Foschi, R. O. Load-Slip Characteristics of Nails. Wood. Sci. 1974, 7(1), 69–76.
  • Heine, C. P.; Dolan, J. D. A New Model to Predict the Load-Slip Relationship of Bolted Connections in Timber. Wood. Fiber. Sci. 2001, 33(4), 534–549.
  • Folz, B.; Filiatrault, A. Cyclic Analysis of Wood Shear Walls. J. Struct. Eng. 2001, 127(4), 433–441. DOI: 10.1061/(ASCE)0733-9445(2001)127:4(433).
  • Kou, Y.; Tian, L.-M.; Hao, J.-P.; Jin, B.-B.; A, X. Lateral Resistance of the Screwed Connections of Original Bamboo. J. Build. Eng. 2022, 45, 103601. DOI: 10.1016/j.jobe.2021.103601.
  • Esmaeili-Goldarag, F.; Babaei, A.; Jafarzadeh, H. An Experimental and Numerical Investigation of Clamping Force Variation in Simple Bolted and Hybrid (Bolted-Bonded) Double Lap Joints Due to Applied Longitudinal Loads. Eng. Fail. Anal. 2018, 91, 327–340. DOI: 10.1016/j.engfailanal.2018.04.047.
  • Bodjona, K.; Raju, K.; Lim, G.-H.; Lessard, L. Load Sharing in Single-Lap Bonded/Bolted Composite Joints. Part I: Model Development and Validation. Compos. Struct. 2015, 129, 268–275. DOI: 10.1016/j.compstruct.2015.04.040.
  • Bodjona, K.; Lessard, L. Load Sharing in Single-Lap Bonded/Bolted Composite Joints. Part II: Global Sensitivity Analysis. Compos. Struct. 2015, 129, 276–283. DOI: 10.1016/j.compstruct.2015.03.069.
  • Chan, W. S.; Vedhagiri, S. Analysis of Composite Bonded/Bolted Joints Used in Repairing. J. Compos. Mater. 2001, 35(12), 1045–1061. DOI: 10.1177/002199801772662325.
  • Yu, M. A.; JIANG. Analysis of the Impact of the Fabrication Technical Process on the Load Transfer Mechanism and Carrying Capacity of the Bonded-bolted Hybrid Composite Joints. J. Mech. Stre. 2011, 33(01), 99–105. Doi: 10.16579/j.issn.1001.9669.2011.01.006.
  • Ma, Y.; Zhao, Q. Analysis of the Bonded-Bolted Hybrid Composite joints’ Carrying Capacity. Fuhe. cailiao. xuebao. 2011, 28(4), 225–230.
  • Matsuzaki, R.; Shibata, M.; Todoroki, A. Improving Performance of GFRP/Aluminum Single Lap Joints Using Bolted/co-Cured Hybrid Method. Composites Part A. Compos. Part A Appl. Sci. Manuf. 2008, 39(2), 154–163. DOI: 10.1016/j.compositesa.2007.11.009.
  • El Zaroug, M.; Kadioglu, F.; Demiral, M.; Saad, D. Experimental and Numerical Investigation into Strength of Bolted, Bonded and Hybrid Single Lap Joints: Effects of Adherend Material Type and Thickness. Int. J. Adhes. Adhes. 2018, 87, 130–141. DOI: 10.1016/j.ijadhadh.2018.10.006.
  • Xu, P.; Zhou, Z.; Liu, T.; Pan, S.; Tan, X.; Zu, S.; Zhang, Y. Propagation of Damage in Bolt Jointed and Hybrid Jointed GLARE Structures Subjected to the Quasi-Static Loading. Compos. Struct. 2019, 218, 79–94. DOI: 10.1016/j.compstruct.2019.03.047.
  • Marannano, G.; Zuccarello, B. Static Strength and Fatigue Life of Optimized Hybrid Single Lap Aluminum-CFRP Structural Joints. J. Adhes. 2018, 94(7), 501–528. DOI: 10.1080/00218464.2017.1291349.
  • Kelly, G. Load Transfer in Hybrid (Bonded/Bolted) Composite Single-Lap Joints. Compos. Struct. 2005, 69(1), 35–43. DOI: 10.1016/j.compstruct.2004.04.016.
  • Mehrabian, M.; Boukhili, R. 3D-DIC Strain Field Measurements in Bolted and Hybrid Bolted-Bonded Joints of Woven Carbon-Epoxy Composites. Compos. B Eng. 2021, 218, 108875. DOI: 10.1016/j.compositesb.2021.108875.
  • Li, X.; Tan, Z.; Wang, L.; Zhang, J.; Xiao, Z.; Luo, H. Experimental Investigations of Bolted, Adhesively Bonded and Hybrid Bolted/Bonded Single-Lap Joints in Composite Laminates. Mater. Today Commun. 2020, 24, 101244. DOI: 10.1016/j.mtcomm.2020.101244.
  • Li, X.; Cheng, X.; Cheng, Y.; Wang, Z.; Huang, W. Tensile Properties of a Composite–Metal Single-Lap Hybrid Bonded/Bolted Joint. Chinese J. Aeronautics. 2021, 34(2), 629–640. DOI: 10.1016/j.cja.2020.03.042.
  • Li, X.; Cheng, X.; Guo, X.; Liu, S.; Wang, Z. Tensile Properties of a Hybrid Bonded/Bolted Joint: Parameter Study. Compos. Struct. 2020, 245, 112329. DOI: 10.1016/j.compstruct.2020.112329.
  • Sapozhnikov, S.; Shakirov, A. Transverse Reinforcement of Adhesive Joints. Mechanics of Composite Materials. Mech. Compos. Mater. Struct. 2015, 51(2), 209–214. DOI: 10.1007/s11029-015-9491-x.
  • Shakirov, A. A., Sapozhnikov, S. B., Vaulin, S. D. Experimental and FE Analysis of Bonded Single-Lap Joints Strengthened by Self-Tapping Screws. Proceedings of the World Congress on Engineering 2015, London, U.K. 2015.
  • Hassanieh, A.; Valipour, H. R.; Bradford, M. A. Experimental and Analytical Behaviour of Steel-Timber Composite Connections. Constr. Build. Mater. 2016, 118, 63–75. DOI: 10.1016/j.conbuildmat.2016.05.052.
  • Arenas, J. M.; Alía, C.; Cañizo, C.; Ocaña, R.; Narbón, J. J. Technical and Economic Evaluation of Adhesive, Screwed and Hybrid Joints for Bonding Metallic Materials in Industrial Applications. Procedia Manuf. 2017, 13, 1447–1454. DOI: 10.1016/j.promfg.2017.09.156.
  • Anwar, S. N. R.; Suprobo, P.; Wahyuni, E.; Faimun, F.; Anwar, S. A. Static Failure of the Adhesive and Combination Joints on Cold-Formed Steel Joint Using a Cohesive Zone Model Approach. Jurnal Teknologi. 2018, 81(1). DOI: 10.11113/jt.v81.5600.
  • Imakawa, K.; Ochiai, Y.; Aoki, K.; Hori, N.; Takemura, A.; Yamaguchi, T. Mechanical Properties of Hybrid Joints in Timber Structures. J. Wood Sci. 2022, 68(1), 37–38. DOI: 10.1186/s10086-022-02043-4.
  • Domitner, J.; Silvayeh, Z.; Predan, J.; Graf, E.; Krenke, T.; Gubeljak, N. Mechanical Performance and Failure Behavior of Screw-Bonded Joints of Aluminum Sheets and Cross-Laminated Birch Veneer Plates. Eng. Fail. Anal. 2023, 146, 107074. DOI: 10.1016/j.engfailanal.2023.107074.
  • Li, H.-H.; Flagship store of AILIKE. https://ailikebg.tmall.com/?spm=a1z10.1b.1997427721.d4918089.30355d8fE6a6nt (accessed May 24, 2022).
  • Zhang, F.; Chen, H.; Li, X.; Li, H.; Lv, T.; Zhang, W.; Yang, Y. Experimental Study of the Mechanical Behavior of FRP-Reinforced Concrete Canvas Panels. Compos. Struct. 2017, 176, 608–616. DOI: 10.1016/j.compstruct.2017.05.072.
  • Li, H.; Chen, H.; Li, X.; Zhang, F. Design and Construction Application of Concrete Canvas for Slope Protection. Powder Technology. 2019, 344, 937–946. DOI: 10.1016/j.powtec.2018.12.075.
  • Li, M.; Luo, W.; Chen, Y.; Yang, X. Full-Field Strain Distribution and Failure Characteristics of CFRP-Repaired Steel Structures. Eng. Fail. Anal. 2020, 115, 104664. DOI: 10.1016/j.engfailanal.2020.104664.
  • Zhang, Z.; Li, Y.; Liu, R. Failure Behavior of Adhesive Bonded Interface Between Steel and Bamboo Plywood. J. Adhes. Sci. Technol. 2016, 30(19), 2081–2099. DOI: 10.1080/01694243.2016.1173390.
  • Braga, D. F. O.; de Sousa, L. M. C.; Infante, V.; da Silva, L. F. M.; Moreira, P. M. G. P. Aluminium Friction-Stir Weld-Bonded Joints. J. Adhes. 2016, 92(7–9), 665–678. DOI: 10.1080/00218464.2015.1085860.
  • Oinonen, A.; Marquis, G. Shear Damage Simulation of Adhesive Reinforced Bolted Lap-Connection Interfaces. Eng. Fract. Mech. 2013, 109, 341–352. DOI: 10.1016/j.engfracmech.2013.04.016.
  • De Almeida, F. J. S.; Campilho, R. D. S. G.; Silva, F. J. G. Strength Prediction of T-Peel Joints by a Hybrid Spot-Welding/adhesive Bonding Technique. J. Adhes. 2018, 94(3), 181–198. DOI: 10.1080/00218464.2016.1244013.
  • Pitta, S.; de la Mora Carles, V.; Roure, F.; Crespo, D.; Rojas, J. I. On the Static Strength of Aluminium and Carbon Fibre Aircraft Lap Joint Repairs. Compos. Struct. 2018, 201, 276–290. DOI: 10.1016/j.compstruct.2018.06.002.
  • Marques, G. P.; Campilho, R. D. S. G.; da Silva, F. J. G.; Moreira, R. D. F. Adhesive Selection for Hybrid Spot-Welded/bonded Single-Lap Joints: Experimentation and Numerical Analysis. Compos. B Eng. 2016, 84, 248–257. DOI: 10.1016/j.compositesb.2015.09.002.
  • Zheng, Y.; Zhang, C.; Tie, Y.; Wang, X.; Li, M. Tensile Properties Analysis of CFRP-Titanium Plate Multi-Bolt Hybrid Joints. Chinese J. Aeronautics. 2022, 35(3), 464–474. DOI: 10.1016/j.cja.2021.07.006.
  • Xu, W.; Yu, H.; Tao, C. Influence of Randomly Distributed Adhesive Properties on the Overall Mechanical Response of Metallic Adhesively Bonded Joints. Int. J. Adhes. Adhes. 2014, 52, 48–56. DOI: 10.1016/j.ijadhadh.2014.04.001.
  • Xu, W.; Wei, Y. Strength and Interface Failure Mechanism of Adhesive Joints. Int. J. Adhes. Adhes. 2012, 34, 80–92. DOI: 10.1016/j.ijadhadh.2011.12.004.
  • Degui, L.; Yuhao, W.; Yong, W.; Wei, Z. and Tao, W. Study on Flexural Behavior of Built-In Thin-Walled H-Steel Timber Composite Beam. J. Building. Struct. 2022, 43(5), 149–163.
  • Ling, Z.; Rong, X.; Xiang, Z. Laterally Loaded Performance of Single Dowel-Type Fastener Used for Steel Plate-To-Timber Connections. Structures. 2021, 34, 1985–1997. DOI: 10.1016/j.istruc.2021.08.115.
  • Good, R. J. Theory of “Cohesive” vs “Adhesive” Separation in an Adhering System. J. Adhes. 1972, 4(2), 133–154. DOI: 10.1080/00218467208072218.
  • Stehr, M.; Johansson, I. Weak Boundary Layers on Wood Surfaces. J. Adhes. Sci. Technol. 2000, 14(10), 1211–1224. DOI: 10.1163/156856100742168.
  • Zhou, T.; Guan, Z. W. A New Approach to Obtain Flat Nail Embedding Strength of Double-Sided Nail Plate Joints. Constr. Build. Mater. 2011, 25(2), 598–607. DOI: 10.1016/j.conbuildmat.2010.07.033.
  • Dorn, M.; de Borst, K.; Eberhardsteiner, J. Experiments on Dowel-type Timber Connections. Eng. Struct. 2013, 47, 67–80. DOI: 10.1016/j.engstruct.2012.09.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.