788
Views
27
CrossRef citations to date
0
Altmetric
Physiology, biochemistry, and chemical ecology

Probiotic properties of bacteria isolated from bee bread of stingless bee Heterotrigona itama

ORCID Icon, ORCID Icon & ORCID Icon
Pages 172-187 | Received 25 Nov 2019, Accepted 15 Apr 2020, Published online: 25 Aug 2020

References

  • Ab Hamid, S., Salleh, M. S., Thevan, K., & Hashim, N. A. (2016). Distribution and morphometrical variations of stingless bees (Apidae : Meliponini) in urban and forest areas of Penang Island, Malaysia. Journal of Tropical Resources and Sustainable Science, 4, 1–5.
  • Abd Manap, M. Y. (2008). Probiotics: Your friendly gut. UPM Press.
  • Abouda, Z., Zerdani, I., Kalalou, I., Faid, M., & Ahami, M. T. (2011). The antibacterial activity of moroccan bee bread and bee-pollen (fresh and dried) against pathogenic bacteria. Research Journal of Microbiology, 6(4), 376–384. https://doi.org/10.3923/jm.2011.376.384
  • Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., & Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Science and Technology, 79(2017), 316–325. https://doi.org/10.1016/j.lwt.2017.01.041
  • Alvarez-Cisneros, Y. M., & Ponce-Alquicira, E. (2019). Antibiotic resistance in lactic acid bacteria. In Y. Kumar (Ed.), Antimicrobial resistance - A global threat. IntechOpen Limited. https://doi.org/10.5772/intechopen.73725
  • Anderson, K. E., Carroll, M. J., Sheehan, T., Mott, B. M., Maes, P., & Corby-Harris, V. (2014). Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology, 23(23), 5904–5917. https://doi.org/10.1111/mec.12966
  • Angmo, K., Kumari, A., & Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Science and Technology, 66, 428–435. https://doi.org/10.1016/j.lwt.2015.10.057
  • Arakawa, K., Yoshida, S., Aikawa, H., Hano, C., Bolormaa, T., Burenjargal, S., & Miyamoto, T. (2016). Production of a bacteriocin-like inhibitory substance by Leuconostoc mesenteroides subsp. dextranicum 213M0 isolated from Mongolian fermented mare milk, airag. Animal Science Journal = Nihon Chikusan Gakkaiho, 87(3), 449–456. https://doi.org/10.1111/asj.12445
  • Ares, A. M., Valverde, S., Bernal, J. L., Nozal, M. J., & Bernal, J. (2018). Extraction and determination of bioactive compounds from bee pollen. Journal of Pharmaceutical and Biomedical Analysis, 147, 110–124. https://doi.org/10.1016/j.jpba.2017.08.009
  • Baccouri, O., Boukerb, A. M., Farhat, L. B., Zébré, A., Zimmermann, K., Domann, E., Cambronel, M., Barreau, M., Maillot, O., Rincé, I., Muller, C., Marzouki, M. N., Feuilloley, M., Abidi, F., & Connil, N. (2019). Probiotic potential and safety evaluation of Enterococcus faecalis OB14 and OB15, isolated from traditional tunisian testouri cheese and rigouta, using physiological and genomic analysis. Frontiers in Microbiology, 10, 815–881. https://doi.org/10.3389/fmicb.2019.00881
  • Bajpai, V. K., Rather, I. A., Majumder, R., Alshammari, F. H., Nam, G., & Park, Y. (2017). Characterization and antibacterial mode of action of lactic acid Bacterium Leuconostoc mesenteroides HJ69 from Kimchi. Journal of Food Biochemistry, 41(1), e12290. https://doi.org/10.1111/jfbc.12290
  • Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y., & Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21(5), 695–701. https://doi.org/10.1016/j.foodcont.2009.10.010
  • Beric, T., Kojic, M., Stankovic, S., Topisirovic, L., Degrassi, G., Myers, M., & Fira, D. (2012). Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology and Biotechnology, 50(1), 25–31.
  • Cebeci, A., & Gürakan, C. (2003). Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiology, 20(5), 511–518. https://doi.org/10.1016/S0740-0020(02)00174-0
  • Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (2001). Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. Journal of Food Protection, 64(12), 2007–2014. https://doi.org/10.4315/0362-028x-64.12.2007
  • Chen, Y.-S., Wang, L.-T., Liao, Y.-J., Lan, Y.-S., Chang, C.-H., Chang, Y.-C., Wu, H.-C., Lo, H.-Y., Otoguro, M., & Yanagida, F. (2017). Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits. International Journal of Systematic and Evolutionary Microbiology, 67(12), 5144–5149. https://doi.org/10.1099/ijsem.0.002429
  • Clinical and Laboratory Standards Institute. (2013). M100-S23 performance standards for antimicrobial. Clinical and Laboratory Standards Institute.
  • Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European food research and technology, 226(5), 1065–1073.
  • Coppola, R., Succi, M., Tremonte, P., Reale, A., Salzano, G., & Sorrentino, E. (2005). Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Le Lait, 85(3), 193–204. https://doi.org/10.1051/lait https://doi.org/10.1051/lait:2005007
  • de Paula, A. T., Jeronymo-Ceneviva, A. B., Silva, L. F., Todorov, S. D., Franco, B. D. G. M., & Penna, A. L. B. (2015). Leuconostoc mesenteroides SJRP55: A potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. Annals of Microbiology, 65(2), 899–910. https://doi.org/10.1007/s13213-014-0933-9
  • Diana, C.-R., Humberto, H.-S., & Jorge, Y. F. (2015). Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel of Agave salmiana. Probiotics and Antimicrobial Proteins, 7(2), 107–117. https://doi.org/10.1007/s12602-015-9187-5
  • Ehrmann, M. A., Müller, M. R. A., & Vogel, R. F. (2003). Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 1), 7–13. https://doi.org/10.1099/ijs.0.02202-0
  • Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8, 1490–1415. https://doi.org/10.3389/fmicb.2017.01490
  • Endo, A., Futagawa-Endo, Y., & Dicks, L. M. T. (2009). Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Systematic and Applied Microbiology, 32(8), 593–600. https://doi.org/10.1016/j.syapm.2009.08.002
  • Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36(6), 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  • Fijan, S. (2016). Antimicrobial effect of probiotics against common pathogens. In Probiotics and prebiotics in human nutrition and health (pp. 191–221). IntechOpen Limited. https://doi.org/10.5772/63141
  • Giles-Gómez, M., Sandoval García, J. G., Matus, V., Campos Quintana, I., Bolívar, F., & Escalante, A. (2016). In vitro and in vivo probiotic assessment of Leuconostoc mesenteroides P45 isolated from pulque, a Mexican traditional alcoholic beverage. SpringerPlus, 5(1), 1–10. https://doi.org/10.1186/s40064-016-2370-7
  • Gilliam, M. (1979). Microbiology of pollen and bee bread : The genus Bacillus. Apidologie, 10(3), 269–274. https://doi.org/10.1051/apido:19790304
  • Grigoryan, S., Bazukyan, I., & Trchounian, A. (2018). Aggregation and adhesion activity of lactobacilli isolated from fermented products in vitro and in vivo : A potential probiotic strain. Probiotics and Antimicrobial Proteins, 10(2), 269–276. https://doi.org/10.1007/s12602-017-9283-9
  • Gueimonde, M., Sánchez, B., de los Reyes-Gavilán, C. G., & Margolles, A. (2013). Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 4, 202–206. https://doi.org/10.3389/fmicb.2013.00202
  • Guo, Z., Wang, J., Yan, L., Chen, W., Liu, X. m., & Zhang, H. p. (2009). In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. LWT - Food Science and Technology, 42(10), 1640–1646. https://doi.org/10.1016/j.lwt.2009.05.025
  • Hummel, A. S., Hertel, C., Holzapfel, W. H., & Franz, C. M. A. P. (2007). Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Applied and Environmental Microbiology, 73(3), 730–739. https://doi.org/10.1128/AEM.02105-06
  • Ida Muryany, M. Y., Ina Salwany, M. Y., Ghazali, A. R., Hing, H. L., & Nor Fadilah, R. (2017). Identification and characterization of the lactic acid bacteria isolated from Malaysian fermented fish (Pekasam). International Food Research Journal, 24, 868–875.
  • Jaapar, M. F., Halim, M., Mispan, M. R., Jajuli, R., Saranum, M. M., Zainuddin, M. Y., & Abd Ghani, I. (2016). The diversity and abundance of stingless bee (Hymenoptera: Meliponini) in Peninsular Malaysia. Advance in Environmental Biology, 10(9), 1–7.
  • Janashia, I., Choiset, Y., Jozefiak, D., Déniel, F., Coton, E., Moosavi-Movahedi, A. A., Chanishvili, N., & Haertlé, T. (2018). Beneficial protective role of endogenous lactic acid bacteria against mycotic contamination of honeybee beebread. Probiotics and Antimicrobial Proteins, 10(4), 638–639. https://doi.org/10.1007/s12602-017-9379-2
  • Jose, N. M., Bunt, C. R., Hussain, M. A., Maria, N., Bunt, C. R., Implications, M. A. H., & Hussain, M. A. (2015). Implications of antibiotic resistance in probiotics. Food Reviews International, 31(1), 52–62. https://doi.org/10.1080/87559129.2014.961075
  • Kavitha, M., Raja, M., & Perumal, P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports, 11, 59–69. https://doi.org/10.1016/j.aqrep.2018.07.001
  • Kešnerová, L., Mars, R. A. T., Ellegaard, K. M., Troilo, M., Sauer, U., & Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 15(12), e2003467. https://doi.org/10.1371/journal.pbio.2003467
  • Khalifa, S. A. M., Elashal, M., Kieliszek, M., Ghazala, N. E., Farag, M. A., Saeed, A., Xiao, J., Zou, X., Khatib, A., Göransson, U., & El-Seedi, H. R. (2020). Recent insights into chemical and pharmacological studies of bee bread. Trends in Food Science & Technology, 97, 300–316. https://doi.org/10.1016/j.tifs.2019.08.021
  • Kieliszek, M., Piwowarek, K., Kot, A. M., Błażejak, S., Chlebowska-Śmigiel, A., & Wolska, I. (2018). Pollen and bee bread as new health-oriented products: A review. Trends in Food Science & Technology, 71, 170–180. https://doi.org/10.1016/j.tifs.2017.10.021
  • Klein, G., Hallmann, C., Casas, I. A., Abad, J., Louwers, J., & Reuter, G. (2000). Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. Journal of Applied Microbiology, 89(5), 815–824. https://doi.org/10.1046/j.1365-2672.2000.01187.x
  • Kostic, A. Z., Barac, M. B., Sladjana, P. S., Milojkovic-Opesenica, D. M., Tesic, Z. L., Sikoparija, B., & Pesic, M. B. (2015). Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT - Food Science and Technology, 62(1), 301–309. https://doi.org/10.1016/j.lwt.2015.01.031
  • Kuzin, A. P., Sun, T., Jorczak-Baillass, J., Healy, V. L., Walsh, C. T., & Knox, J. R. (2000). Enzymes of vancomycin resistance : The structure of D -alanine – D - lactate ligase of naturally resistant Leuconostoc mesenteroides. Structure, 8(5), 463–470. https://doi.org/10.1016/S0969-2126(00)00129-5
  • Li, Q., Liu, X., Dong, M., Zhou, J., & Wang, Y. (2015). Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from traditional fermented food. International Journal of Agricultural Policy and Research, 3(2), 84–92.
  • Lee, M., Lee, J., Nam, Y., Lee, J. S., Seo, M., & Yi, S. (2016). Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food. International Journal of Food Microbiology, 221, 12–18. https://doi.org/10.1016/j.ijfoodmicro.2015.12.010
  • Liong, M. T., & Shah, N. P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. Journal of Dairy Science, 88(1), 55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X
  • Lob, S., Bahri, S., & Razak, A. (2017). Composition and identification of pollen collected by stingless bee (Heterotrigona itama) in forested and costal area of Terengganu, Malaysia. Malaysian Applied Biology, 46(3), 227–232.
  • Lozo, J., Berić, T., Terzić-Vidojević, A., Stanković, S., Fira, D., & Stanisavljević, L. (2015). Microbiota associated with pollen, bee bread, larvae and adults of solitary bee Osmia cornuta (Hymenoptera: Megachilidae). Bulletin of Entomological Research, 105(4), 470–476. https://doi.org/10.1017/S0007485315000292
  • Malanicheva, I. A., Kozlov, D. G., Sumarukova, I. G., Efremenkova, O. V., Zenkova, V. A., Katrukha, G. S., Reznikova, M. I., Tarasova, O. D., Sineokii, S. P., & El’-Registan, G. I. (2012). Antimicrobial activity of Bacillus megaterium strains. Microbiology, 81(2), 178–185. https://doi.org/10.1134/S0026261712020063
  • Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., & Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16(3), 189–199. https://doi.org/10.1016/j.idairyj.2005.02.009
  • Markiewicz-Żukowska, R., Naliwajko, S. K., Bartosiuk, E., Moskwa, J., Isidorov, V., Soroczyńska, J., & Borawska, M. H. (2013). Chemical composition and antioxidant activity of beebread, and its influence on the glioblastoma cell line (U87MG). Journal of Apicultural Science, 57(2), 147–157. https://doi.org/10.2478/jas-2013-0025
  • Matsumoto, M., Ohishi, H., & Benno, Y. (2004). H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. International Journal of Food Microbiology, 93(1), 109–113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009
  • Mauriello, G., De Prisco, A., Di Prisco, G., La Storia, A., & Caprio, E. (2017). Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps. PLoS One, 12(9), e0183208. https://doi.org/10.1371/journal.pone.0183208
  • McFrederick, Q. S., Wcislo, W. T., Taylor, D. R., Ishak, H. D., Dowd, S. E., & Mueller, U. G. (2012). Environment or kin: Whence do bees obtain acidophilic bacteria? Molecular Ecology, 21(7), 1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x
  • Mishra, V., & Prasad, D. N. (2005). Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. International Journal of Food Microbiology, 103(1), 109–115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  • Mohammad, S. M., Mahmud-Ab-Rashid, N. K., & Zawawi, N. (2020). Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from Malaysia. Journal of Food Quality, 2020, 1–17. https://doi.org/10.1155/2020/2845757
  • Monteagudo-Mera, A., Rodriguez-Aparicio, L., Rua, J., Martinez-Blanco, H., Navasa, N., Garcia-Armesto, M. R., & Ferrero, M. A. (2012). In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. Journal of Functional Foods, 4(2), 531–541. https://doi.org/10.1016/j.jff.2012.02.014
  • Ngalimat, M. S., Raja Abd. Rahman, R. N. Z., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 7, e7478. https://doi.org/10.7717/peerj.7478
  • O’Bryan, C. A., Crandall, P. G., Ricke, S. C., & Ndahetuye, J. B. (2014). Lactic acid bacteria (LAB) as antimicrobials in food products: Types and mechanisms of action. In Handbook of natural antimicrobials for food safety and quality. (pp. 117–136). Woodhead Publishing https://doi.org/10.1016/B978-1-78242-034-7.00006-2
  • Ołdak, A., Zielińska, D., Rzepkowska, A., & Kołożyn-Krajewska, D. (2017). Comparison of antibacterial activity of Lactobacillus plantarum strains isolated from two different kinds of regional cheeses from Poland : Oscypek and Korycinski Cheese. BioMed Research International, 2017, 6820369. https://doi.org/10.1155/2017/6820369
  • Olofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0
  • Ouoba, L. I. I., Thorsen, L., & Varnam, A. H. (2008). Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. International Journal of Food Microbiology, 124(3), 224–230. https://doi.org/10.1016/j.ijfoodmicro.2008.03.026
  • Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Leticia, M. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63(Jan), 233–269. https://doi.org/10.1016/j.fct.2013.11.010
  • Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., & Chincholkar, S. B. (2009). Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Research International, 42(4), 505–510. https://doi.org/10.1016/j.foodres.2009.01.013
  • Plessas, S., Nouska, C., Karapetsas, A., Kazakos, S., Alexopoulos, A., Mantzourani, I., Chondrou, P., Fournomiti, M., Galanis, A., & Bezirtzoglou, E. (2017). Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chemistry, 226, 102–108. https://doi.org/10.1016/j.foodchem.2017.01.052
  • Prasad, J., Gill, H., Smart, J., & Gopal, P. K. (1998). Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal, 8(12), 993–1002. https://doi.org/10.1016/S0958-6946(99)00024-2
  • Ramachandran, R., Chalasani, A. G., Lal, R., & Roy, U. (2014). A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. The Scientific World Journal, 2014, 968487. https://doi.org/10.1155/2014/968487
  • Ramasamy, K., Rahman, N. Z. A., Chin, S. C., Alitheen, N. J., Abdullah, N., & Wan, H. Y. (2012). Probiotic potential of lactic acid bacteria from fermented Malaysian food or milk products. International Journal of Food Science & Technology, 47(10), 2175–2183. https://doi.org/10.1111/j.1365-2621.2012.03085.x
  • Rokop, Z. P., Horton, M. A., & Newton, I. L. G. (2015). Interactions between cooccurring lactic acid bacteria in honey bee hives. Applied and Environmental Microbiology, 81(20), 7261–7270. https://doi.org/10.1128/AEM.01259-15
  • Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4(396), 396–398. https://doi.org/10.3389/fmicb.2013.00396
  • Sakandar, H. A., Kubow, S., & Sadiq, F. A. (2019). Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers. LWT, 104, 70–75. https://doi.org/10.1016/j.lwt.2019.01.038
  • Sharafi, H., Derakhshan, V., Paknejad, M., Alidoust, L., Tohidi, A., Pornour, M., Hajfarajollah, H., Zahiri, H. S., & Noghabi, K. A. (2015). Lactobacillus crustorum KH : Novel prospective probiotic strain isolated from Iranian traditional dairy products. Applied Biochemistry and Biotechnology, 175(4), 2178–2194. https://doi.org/10.1007/s12010-014-1404-2
  • Sharma, G., Dang, S., Gupta, S., & Gabrani, R. (2018). Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Medical Principles and Practice, 27(2), 186–192. https://doi.org/10.1159/000487306
  • Sharma, P., Tomar, S. K., Sangwan, V., Goswami, P., & Singh, R. (2016). Antibiotic resistance of Latobacillus sp. isolated from commercial probiotic preparations. Journal of Food Safety, 36(1), 38–51. https://doi.org/10.1111/jfs.12211
  • Silva, T. M. S., Camara, C. A., Lins, A. C. S., Agra, M., de, F., Silva, E. M. S., Reis, I. T., & Freitas, B. M. (2009). Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais da Academia Brasileira de Ciencias, 81(2), 173–178. https://doi.org/10.1590/s0001-37652009000200003
  • Singh, T. P., Kaur, G., Malik, R. K., Schillinger, U., Guigas, C., & Kapila, S. (2012). Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics and Antimicrobial Proteins, 4(1), 47–58. https://doi.org/10.1007/s12602-012-9090-2
  • Singh, T. P., Malik, R. K., & Kaur, G. (2016). Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire, 41(1), 1–10. https://doi.org/10.1186/s41110-016-0007-9
  • Sumi, C. D., Yang, B. W., Yeo, I. C., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93–103. https://doi.org/10.1139/cjm-2014-0613
  • Syed Yaacob, S. N., Huyop, F., Kamarulzaman Raja Ibrahim, R., & Wahab, R. A. (2018). Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. Journal of Apicultural Research, 57(3), 395–405. https://doi.org/10.1080/00218839.2018.1428047
  • Tokatlı, M., Gülgör, G., Bağder Elmacı, S., Arslankoz İşleyen, N., & Özçelik, F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. BioMed Research International, 2015, 315819. https://doi.org/10.1155/2015/315819
  • Touret, T., Oliveira, M., & Semedo-Lemsaddek, T. (2018). Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS One, 13(9), e0203501. https://doi.org/10.1371/journal.pone.0203501
  • Tuo, Y., Zhang, W., Zhang, L., Ai, L., Zhang, Y., Han, X., & Yi, H. (2013). Study of probiotic potential of four wild Lactobacillus rhamnosus strains. Anaerobe, 21, 22–27. https://doi.org/10.1016/j.anaerobe.2013.03.007
  • Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS One, 7(3), e33188. https://doi.org/10.1371/journal.pone.0033188
  • Vásquez, A., & Olofsson, T. C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48(3), 189–195. https://doi.org/10.3896/IBRA.1.48.3.07
  • Vit, P., Santiago, B., Peña-Vera, M., & Pérez-Pérez, E. (2018). Chemical characterization and bioactivity of Tetragonisca angustula pot-pollen from Mérida, Venezuela. In Pot-pollen in stingless bee melittology (pp. 339–347). Springer Nature. https://doi.org/10.1007/978-3-319-61839-5
  • Wan Ismail, W. I. (2016). A review on beekeping in Malaysia: History, importance and future directions. Journal of Sustainability Science and Management, 11(2), 70–80.
  • Wang, M., Zhao, W., Xu, H., Wang, Z., & He, S. (2015). Bacillus in the guts of honey bees (Apis mellifera ; Hymenoptera : Apidae) mediate changes in amylase values. European Journal of Entomology, 112(4), 619–624. https://doi.org/10.14411/eje.2015.095
  • Xu, H., Jeong, H. S., Lee, H. Y., & Ahn, J. (2009). Assessment of cell surface properties and adhesion potential of selected probiotic strains. Letters in Applied Microbiology, 49(4), 434–442. https://doi.org/10.1111/j.1472-765X.2009.02684.x
  • Yi, L., Dang, Y., Wu, J., Zhang, L., Liu, X., Liu, B., Zhou, Y., & Lu, X. (2016). Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. Journal of Dairy Science, 99(9), 7002–7015. https://doi.org/10.3168/jds.2016-11166
  • Yu, Z., Zhang, X., Li, S., Li, C., Li, D., & Yang, Z. (2013). Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World Journal of Microbiology & Biotechnology, 29(3), 489–498. https://doi.org/10.1007/s11274-012-1202-3
  • Zhang, S., Oh, H.-H., Alexander, L. M., Ozcam, M., Pijkeren, J.-P. & van, (2018). D-alanyl-D-alanine ligase as a broad-host-range counterselection marker in vancomycin-resistant lactic acid bacteria. Journal of Bacteriology, 200(13), 1–15. https://doi.org/10.1128/JB.00607-17
  • Zulkhairi Amin, F. A., Sabri, S., Ismail, M., Chan, K. W., Ismail, N., Mohd Esa, N., Mohd Lila, M. A., & Zawawi, N. (2019). Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. International Journal of Environmental Research and Public Health, 17(1), 215–278. https://doi.org/10.3390/ijerph17010278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.