316
Views
5
CrossRef citations to date
0
Altmetric
Genetics and Breeding

Natural history and maternal investment of Ceratina cucurbitina, the most common European small carpenter bee, in different European regions

ORCID Icon, , , , , , & show all
Pages 151-162 | Received 17 Apr 2020, Accepted 08 Jul 2020, Published online: 29 Oct 2020

References

  • Able, K. W. (2016). Natural history: An approach whose time has come, passed, and needs to be resurrected. ICES Journal of Marine Science, 73(9), 2150–2155. https://doi.org/10.1093/icesjms/fsw049
  • Agrawal, A. A. (2017). Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. The American Naturalist, 190(S1), S1–S12. https://doi.org/10.1086/692111
  • Alcock, J., Simmons, L. W., & Beveridge, M. (2005). Seasonal change in offspring sex and size in Dawson’s burrowing bees (Amegilla dawsoni) (Hymenoptera: Anthophorini). Ecological Entomology, 30(3), 247–254. https://doi.org/10.1111/j.0307-6946.2005.00695.x
  • Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integrative and Comparative Biology, 44(6), 413–424. https://doi.org/10.1093/icb/44.6.413
  • Bosch, J. (2008). Production of undersized offspring in a solitary bee. Animal Behaviour, 75(3), 809–816. https://doi.org/10.1016/j.anbehav.2007.06.018
  • Bosch, J., & Vicens, N. (2002). Body size as an estimator of production costs in a solitary bee. Ecological Entomology, 27(2), 129–137. https://doi.org/10.1046/j.1365-2311.2002.00406.x
  • Brockmann, H. J. (2004). Variable life-history and emergence patterns of the pipe-organ mud-daubing Wasp, Trypoxylon politum (Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society, 77(4), 503–527. https://doi.org/10.2317/E43.1
  • Brown, J. H., Stevens, G. C., & Kaufman, D. M. (1996). The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics, 27(1), 597–623. https://doi.org/10.1146/annurev.ecolsys.27.1.597
  • Core Developmental Team, R. (2016). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing.
  • Coville, R. E., & Griswold, C. (1984). Biology of Trypoxylon (Trypargilum) superbum (Hymenoptera: Sphecidae), a spider-hunting Wasp with extended guarding of the brood by males. Journal of the Kansas Entomological Society, 57(3), 365–376.
  • Cronin, A. L., & Schwarz, M. P. (2001). Latitudinal variation in the sociality of allodapine bees (Hymenoptera: Apidae): sex ratios, relatedness and reproductive differentiation. Australian Journal of Zoology, 49(1), 1–16. https://doi.org/10.1071/ZO99044
  • Daly, H. V. (1983). Taxonomy and ecology of Ceratinini of North Africa and the Iberian Peninsula (Hymenoptera: Apoidea). Systematic Entomology, 8(1), 29–62. https://doi.org/10.1111/j.1365-3113.1983.tb00466.x
  • Davison, P. J., & Field, J. (2016). Social polymorphism in the sweat bee Lasioglossum (Evylaeus) calceatum. Insectes Sociaux, 63, 327–338. https://doi.org/10.1007/s00040-016-0473-3
  • DeGregorio, B. A., Blouin-Demers, G., Carfagno, G. L. F., Gibbons, J. W., Mullin, S. J., Sperry, J. H., Willson, J. D., Wray, K., & Weatherhead, P. J. (2018). Geographic variation in body size and sexual size dimorphism of North American Ratsnakes (Pantherophis spp. s.l.). Canadian Journal of Zoology, 96(11), 1196–1202. https://doi.org/10.1139/cjz-2018-0005
  • Dew, R. M., Shell, W. A., & Rehan, S. M. (2018). Changes in maternal investment with climate moderate social behaviour in a facultatively social bee. Behavioral Ecology and Sociobiology, 72(4), 69. https://doi.org/10.1007/s00265-018-2488-4
  • Field, J., Paxton, R. J., Soro, A., & Bridge, C. (2010). Cryptic plasticity underlies a major evolutionary transition. Current Biology: CB, 20(22), 2028–2031. https://doi.org/10.1016/j.cub.2010.10.020
  • Foster, S. A. (1999). The geography of behaviour: An evolutionary perspective. Trends in Ecology & Evolution, 14(5), 190–195. https://doi.org/10.1016/S0169-5347(98)01577-8
  • Gerber, H. S., & Klostermeyer, E. C. (1970). Sex control by bees: A voluntary act of egg fertilization during oviposition. Science (New York, NY), 167(3914), 82–84. https://doi.org/10.1126/science.167.3914.82
  • Greene, H. W. (2005). Organisms in nature as a central focus for biology. Trends in Ecology & Evolution, 20(1), 23–27. https://doi.org/10.1016/j.tree.2004.11.005
  • Groom, S. V. C., & Rehan, S. M. (2018). Climate-mediated behavioural variability in facultatively social bees. Biological Journal of the Linnean Society, 125(1), 165–170. https://doi.org/10.1093/biolinnean/bly101
  • Hayashi, F. (1990). Convergence of insular dwarfism in damselflies (Euphaea) and dobsonflies (Protohermes). Freshwater Biology, 23(2), 219–231. https://doi.org/10.1111/j.1365-2427.1990.tb00267.x
  • Kim, J. (1999). Influence of resource level on maternal investment in a leaf-cutter bee (Hymenoptera: Megachilidae). Behavioral Ecology, 10(5), 552–556. https://doi.org/10.1093/beheco/10.5.552
  • Kim, J. (1999). Influence of resource level on maternal investment in a leaf-cutter bee (Hymenoptera: Megachilidae). Behavioral Ecology, 10(5), 552–556. https://doi.org/10.1093/beheco/10.5.552
  • Kim, J.-Y. (1992). Nest dimensions of two leaf-cutter bees (Hymenoptera: Megachilidae). Annals of the Entomological Society of America, 85(1), 85–90. https://doi.org/10.1093/aesa/85.1.85
  • Lawson, S. P., Ciaccio, K. N., & Rehan, S. M. (2016). Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behavioral Ecology and Sociobiology, 70(11), 1891–1900. https://doi.org/10.1007/s00265-016-2194-z
  • Lawson, S. P., Helmreich, S. L., & Rehan, S. M. (2017). Effects of nutritional deprivation on development and behavior in the subsocial bee Ceratina calcarata (Hymenoptera: Xylocopinae). Journal of Experimental Biology, 220(pt 23), 4456–4462.
  • Lawson, S. P., Shell, W. A., Lombard, S. S., & Rehan, S. M. (2018). Climatic variation across a latitudinal gradient affect phenology and group size, but not social complexity in small carpenter bees. Insectes Sociaux, 65(3), 483–410. https://doi.org/10.1007/s00040-018-0635-6
  • Lewis, V., & Richards, M. H. (2017). Experimentally induced alloparental care in a solitary carpenter bee. Animal Behaviour, 123, 229–238. https://doi.org/10.1016/j.anbehav.2016.11.003
  • Maeta, Y., Sierra, E. A., & Sakagami, S. F. (1997a). Comparative studies on the in-nest behaviors of small carpenter bees, the genus Ceratina (Hymenoptera, Anthophoridae, Xylocopinae): I. Ceratina (Ceratina) cucurbitina, part 1. Japanese Journal of Entomology, 65(2), 303–319.
  • Maeta, Y., Sierra, E. A., & Sakagami, S. F. (1997b). Comparative studies on the in-nest behaviors of small carpenter bees, the genus Ceratina (Hymenoptera, Anthophoridae, Xylocopinae): I. Ceratina (Ceratina) cucurbitina, part 2. Japanese Journal of Entomology, 65(3), 471–481.
  • Meiri, S. (2011). Bergmann’s Rule – What’s in a name? Global Ecology and Biogeography, 20(1), 203–207. https://doi.org/10.1111/j.1466-8238.2010.00577.x
  • Michener, C. D. (2007). The bees of the world. 2nd ed. The Johns Hopkins University Press.
  • Mikát, M., Benda, D., & Straka, J. (2019). Maternal investment in a bee species with facultative nest guarding and males heavier than females. Ecological Entomology, 44(6), 823–832. https://doi.org/10.1111/een.12768
  • Mikát, M., Černá, K., & Straka, J. (2016). Major benefits of guarding behavior in subsocial bees: implications for social evolution. Ecology and Evolution, 6(19), 6784–6797. https://doi.org/10.1002/ece3.2387
  • Mikát, M., Franchino, C., & Rehan, S. M. (2017). Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behavioral Ecology and Sociobiology, 71(9), 135. https://doi.org/10.1007/s00265-017-2365-6
  • Mikát, M., Janošík, L., Černá, K., Matoušková, E., Hadrava, J., Bureš, V., & Straka, J. (2019). Polyandrous bee provides extended offspring care biparentally as an alternative to monandry based eusociality. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6238–6243. https://doi.org/10.1073/pnas.1810092116
  • Molumby, A. (1997). Why make daughters larger? Maternal sex-allocation and sex-dependent selection for body size in a mass-provisioning wasp, Trypoxylon politum. Behavioral Ecology, 8(3), 279–287. https://doi.org/10.1093/beheco/8.3.279
  • Özbek, H., & Terzo, M. (2016). Distribution data for the tribes Ceratinini and Allodapini (Hymenoptera: Apidae) with a checklist of the subfamily Xylocopinae of Turkey. Acta Entomologica Serbica, 21(1), 93–112.
  • Page, R. E., Gadau, J., & Beye, M. (2002). The emergence of hymenopteran genetics. Genetics, 160(2), 375–379.
  • Paini, D. R., & Bailey, W. J. (2002). Seasonal sex ratio and unbalanced investment sex ratio in the Banksia bee Hylaeus alcyoneus. Ecological Entomology, 27(6), 713–719. https://doi.org/10.1046/j.1365-2311.2002.00459.x
  • Palmer, M. (2002). Testing the ‘island rule’ for a tenebrionid beetle (Coleoptera, Tenebrionidae). Acta Oecologica, 23, 103–107. https://doi.org/10.1016/S1146-609X(02)01140-2
  • Peterson, J. H., & Roitberg, B. D. (2016). Variable flight distance to resources results in changing sex allocation decisions, Megachile rotundata. Behavioral Ecology and Sociobiology, 70(2), 247. https://doi.org/10.1007/s00265-015-2043-5
  • Peterson, J. H., Roitberg, B. D., & Peterson, J. H. (2006). Impacts of flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata. Behavioral Ecology and Sociobiology, 59(5), 589–596. https://doi.org/10.1007/s00265-005-0085-9
  • Pironon, S., Papuga, G., Villellas, J., Angert, A. L., García, M. B., & Thompson, J. D. (2017). Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biological Reviews of the Cambridge Philosophical Society, 92(4), 1877–1909. https://doi.org/10.1111/brv.12313
  • Purcell, J. (2011). Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews of the Cambridge Philosophical Society, 86(2), 475–491. https://doi.org/10.1111/j.1469-185X.2010.00156.x
  • Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, U., Gonseth, Y., Haubruge, E., Mahe, G., Manino, A., Michez, D., Neumayer, J., Odegaard, F., Paukkunen, J., Pawlikowski, T., … Schweiger, O. (2015). Climatic risk and distribution atlas of european bumblebees. BioRisk, 10, 1–236. https://doi.org/10.3897/biorisk.10.4749
  • Rehan, S. M., & Richards, M. H. (2010). Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 142(1), 65–74. https://doi.org/10.4039/n09-056
  • Rehan, S. M., Chapman, T. W., Craigie, A. I., Richards, M. H., Cooper, S. J. B., & Schwarz, M. P. (2010). Molecular phylogeny of the small carpenter bees (Hymenoptera: Apidae: Ceratinini) indicates early and rapid global dispersal. Molecular Phylogenetics and Evolution, 55(3), 1042–1054. https://doi.org/10.1016/j.ympev.2010.01.011
  • Rehan, S. M., Leys, R., & Schwarz, M. P. (2012). A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS One, 7(4), e34690. https://doi.org/10.1371/journal.pone.0034690
  • Rehan, S. M., Richards, M. H., & Schwarz, M. P. (2009). Evidence of social nesting in the Ceratina of Borneo (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 82(2), 194–209. https://doi.org/10.2317/JKES809.22.1
  • Rehan, S. M., Richards, M. H., & Schwarz, M. P. (2010). Social polymorphism in the Australian small carpenter bee, Ceratina (Neoceratina) australensis. Insectes Sociaux, 57(4), 403–412. https://doi.org/10.1007/s00040-010-0097-y
  • Rehan, S. M., Tierney, S. M., & Wcislo, W. T. (2015). Evidence for social nesting in Neotropical ceratinine bees. Insectes Sociaux, 62(4), 465–469. https://doi.org/10.1007/s00040-015-0425-3
  • Richards, M. H. (2000). Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Canadian Journal of Zoology, 78(7), 1259–1266. https://doi.org/10.1139/z00-064
  • Rosenheim, J. A., Nonacs, P., & Mangel, M. (1996). Sex ratios and multifaceted parental investment. The American Naturalist, 148(3), 501–535. https://doi.org/10.1086/285937
  • Sakagami, S. F., & Maeta, Y. (1977). Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Sociaux, 24(4), 319–343. https://doi.org/10.1007/BF02223784
  • Sakagami, S. F., & Maeta, Y. (1984). Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). Journal of the Kansas Entomological Society, 57(4), 639–656.
  • Sakagami, S. F., & Maeta, Y. (1987). Multifemale nests and rudimentary castes of an" almost" solitary bee Ceratina flavipes, with additional observations on multifemale nests of Ceratina japonica (Hymenoptera, Apoidea). Kontyu, Tokyo, 55, 391–409.
  • Sakagami, S. F., & Maeta, Y. (1989). Compatibility and incompatibility of solitary life with eusociality in two normally solitary bees Ceratina japonica and Ceratina okinawana (Hymenoptera, Apoidea), with notes on the incipient phase of eusociality. Japanese Journal of Entomology, 57(2), 417–439.
  • Schürch, R., Accleton, C., & Field, J. (2016). Consequences of a warming climate for social organisation in sweat bees. Behavioral Ecology and Sociobiology, 70(8), 1131–1139. https://doi.org/10.1007/s00265-016-2118-y
  • Schwarz, M. P., Richards, M. H., & Danforth, B. N. (2007). Changing paradigms in insect social evolution: Insights from Halictine and Allodapine bees. Annual Review of Entomology, 52(1), 127–150. https://doi.org/10.1146/annurev.ento.51.110104.150950
  • Seidelmann, K. (2006). Open-cell parasitism shapes maternal investment patterns in the Red Mason bee Osmia rufa. Behavioral Ecology, 17(5), 839–848. https://doi.org/10.1093/beheco/arl017
  • Shelomi, M. (2012). Where are we now? Bergmann's rule sensu lato in insects. The American Naturalist, 180(4), 511–519. https://doi.org/10.1086/667595
  • Stark, R. E. (1992). Sex ratio and maternal investment in the multivoltine large carpenter bee Xylocopa sulcatipes (Apoideh: Anthophoridae). Ecological Entomology, 17(2), 160–166. https://doi.org/10.1111/j.1365-2311.1992.tb01174.x
  • Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259–268. https://doi.org/10.2307/2389364
  • Strohm, E., & Linsenmair, K. E. (2000). Allocation of parental investment among individual offspring in the European beewolf Philanthus triangulum F. (Hymenoptera: Sphecidae). Biological Journal of the Linnean Society, 69(2), 173–192. https://doi.org/10.1111/j.1095-8312.2000.tb01197.x
  • Sugiura, N. (1994). Parental investment and offspring sex ratio in a solitary bee, Anthidium septemspinosum Lepeletier (Hymenoptera: Megachilidae). Journal of Ethology, 12(2), 131–139. https://doi.org/10.1007/BF02350058
  • Suguira, N., & Maeta, Y. (1989). Parental investment and offspring sex ratio in a solitary mason bee, Osmia cornifrons (Radoszkowski)(Hymenoptera, Megachilidae). Japanese Journal of Entomology, 57(4), 861–875.
  • Terzo, M. (1998). Annotated list of the species of the genus Ceratina (Latreille) occuring in the Near East, with descriptions of new species (Hymenoptera: Apoidea: Xylocopinae). Linzer Biologische Beiträge, 30(2), 719–743.
  • Terzo, M., & Ortiz-Sánchez, F. J. (2004). Nuevos datos para las especies de Ceratinini de España y Portugal, con una clave para su identificación (Hymenoptera, Apoidea, Xylocopinae). Graellsia, 60(1), 13–26. https://doi.org/10.3989/graellsia.2004.v60.i1.190
  • Terzo, M., Rasmont, P. (2011). Atlas of the European Bees: Genus Ceratina [online]. Atlas Hymenoptera - Atlas of the European Bees - STEP Project. http://www.atlashymenoptera.net/page.asp?id=192.
  • Trumbo, S. T. (2012). Patterns of parental care in invertebrates. In: N. J. Royle, P. T. Smiseth, & M. Kölliker (Eds.), The evolution of parental care (pp. 81–100). Oxford University Press.
  • Vannote, R. L., & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist, 115(5), 667–695. https://doi.org/10.1086/283591
  • Virgós, E., Kowalczyk, R., Trua, A., Marinis, A., de, Mangas, J. G., Barea, ‐Azcón, J. M., & Geffen, E. (2011). Body size clines in the European badger and the abundant centre hypothesis. Journal of Biogeography, 38(8), 1546–1556. https://doi.org/10.1111/j.1365-2699.2011.02512.x
  • Wilson, E. O. (1971). The insect societies. Belknap Press of Harvard University Press.
  • Zeuss, D., Brunzel, S., & Brandl, R. (2017). Environmental drivers of voltinism and body size in insect assemblages across. Global Ecology and Biogeography, 26(2), 154–165. https://doi.org/10.1111/geb.12525

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.