238
Views
0
CrossRef citations to date
0
Altmetric
Hive Products Science

Bioactive and physicochemical profile of honey collected from Colombian organic and conventional coffee growing areas

, , &
Pages 518-529 | Received 18 Aug 2020, Accepted 19 Dec 2020, Published online: 10 Mar 2021

References

  • Altunatmaz, S. S., Tarhan, D., Aksu, F., Ozsobaci, N. P., Or, M. E., & Barutçu, U. B. (2019). Levels of chromium, copper, iron, magnesium, manganese, selenium, zinc, cadmium, lead and aluminium of honey varieties produced in Turkey. Food Science and Technology, 39(suppl 2), 392–397. https://doi.org/10.1590/fst.19718
  • Alvarez-Suarez, J. M., Giampieri, F., Brenciani, A., Mazzoni, L., Gasparrini, M., González-Paramás, A. M., Santos-Buelga, C., Morroni, G., Simoni, S., Forbes-Hernández, T. Y., Afrin, S., Giovanetti, E., & Battino, M. (2018). Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT, 87, 272–279. https://doi.org/10.1016/j.lwt.2017.08.079
  • AOAC. (2019). Official methods of analysis. AOAC International.
  • Atanassova, J., & Lazarova, M. (2012). Pollen and inorganic characteristics of Bulgarian unifloral honeys. Czech Journal of Food Science, 30(6), 520–526.
  • Attanzio, A., Tesoriere, L., Allegra, M., & Livrea, M. A. (2016). Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon, 2(11), e00193. https://doi.org/10.1016/j.heliyon.2016.e00193
  • Belay, A., Haki, G. D., Birringer, M., Borck, H., Lee, Y.-C., Kim, K.-T., Baye, K., & Melaku, S. (2017). Enzyme activity, amino acid profiles and hydroxymethylfurfural content in Ethiopian monofloral honey. Journal of Food Science and Technology, 54(9), 2769–2778. https://doi.org/10.1007/s13197-017-2713-6
  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Boussaid, A., Chouaibi, M., Rezig, L., Hellal, R., Donsì, F., Ferrari, G., & Hamdi, S. (2018). Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry, 11(2), 265–274. https://doi.org/10.1016/j.arabjc.2014.08.011
  • Bravo-Monroy, L., Tzanopoulos, J., & Potts, S. G. (2015). Ecological and social drivers of coffee pollination in Santander, Colombia. Agriculture Ecosystems and Environment, 211, 145–154. https://doi.org/10.1016/j.agee.2015.06.007
  • Bueno-Costa, F. M., Zambiazi, R. C., Bohmer, B. W., Chaves, F. C., Silva, W. P. d., Zanusso, J. T., & Dutra, I. (2016). Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul. Lwt - Food Science and Technology, 65, 333–340. https://doi.org/10.1016/j.lwt.2015.08.018
  • Cabrera, M., Perez, M., Gallez, L., Andrada, A., & Balbarrey, G. (2017). Colour, antioxidant capacity, phenolic and flavonoid content of honey from the Humid Chaco Region, Argentina. Phyton, International Journal of Experimental Botany, 86, 124–130.
  • Camina, J., Pellerano, R., & Marchevsky, E. (2012). Geographical and botanical classification of honeys and apicultural products by chemometric methods. A review. Current Analytical Chemistry, 8(3), 408–425.
  • Can, Z., Yildiz, O., Sahin, H., Akyuz Turumtay, E., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, 180, 133–141. https://doi.org/10.1016/j.foodchem.2015.02.024
  • Cavazza, A., Corradini, C., Musci, M., & Salvadeo, P. (2013). High-performance liquid chromatographic phenolic compound fingerprint for authenticity assessment of honey. Journal of the Science of Food and Agriculture, 93(5), 1169–1175. https://doi.org/10.1002/jsfa.5869
  • Chakir, A., Romane, A., Barbagianni, N., Bartoli, D., & Ferrazzi, P. (2011). Major and trace elements in different types of Moroccan honeys. Australian Journal of Basic and Applied Sciences, 5, 223–231.
  • Chen, H., Jin, L., Chang, Q., Peng, T., Hu, X., Fan, C., Pang, G., Lu, M., & Wang, W. (2017). Discrimination of botanical origins for Chinese honey according to free amino acids content by high-performance liquid chromatography with fluorescence detection with chemometric approaches. Journal of the Science of Food and Agriculture, 97(7), 2042–2049. https://doi.org/10.1002/jsfa.8008
  • Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P., Zhang, J., Bravo Lamas, L., Martínez Flórez, S., Agudo Toyos, P., Quiles, J., Giampieri, F., & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://doi.org/10.3390/molecules23092322
  • Ciucure, C. T., & Geană, E. (2019). Phenolic compounds profile and biochemical properties of honeys in relationship to the honey floral sources. Phytochemical Analysis : PCA, 30(4), 481–492. https://doi.org/10.1002/pca.2831
  • da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
  • Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2011). Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44(5), 1504–1513. https://doi.org/10.1016/j.foodres.2011.03.049
  • Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2014). Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chemistry, 142, 135–143. https://doi.org/10.1016/j.foodchem.2013.07.033
  • Fan, C., Li, N., & Cao, X. (2015). Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chemistry, 174, 446–451. https://doi.org/10.1016/j.foodchem.2014.11.050
  • FAO. (2001). Codex standards for honey. Codex alimentarius commission standards.
  • Ferreres, F., Tomás-Barberán, F. A., Soler, C., García-Viguera, C., Ortiz, A., & Tomás-Lorente, F. (1994). Simple extractive technique for honey flavonoid HPLC analysis. Apidologie, 25(1), 21–30. https://doi.org/10.1051/apido:19940103
  • Flanjak, I., Strelec, I., Kenjerić, D., & Primorac, L. (2016). Croatian produced unifloral honey characterized according to the protein and proline content and enzyme activities. Journal of Apicultural Science, 60(1), 39–48.
  • FNC. (2020). La Federación Nacional de Cafeteros en Cifras.
  • Guleria, S., Tiku, A. K., Singh, G., Koul, A., Gupta, S., & Rana, S. (2013). In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. Journal of Plant Biochemistry and Biotechnology, 22(1), 9–15. https://doi.org/10.1007/s13562-012-0105-6
  • IHC. (2009). Harmonised methods of the international honey commission. International Honey Commission.
  • Imtara, H., Kmail, A., Touzani, S., Khader, M., Hamarshi, H., Saad, B., & Lyoussi, B. (2019). Chemical analysis and cytotoxic and cytostatic effects of twelve honey samples collected from different regions in morocco and palestine. Evidence-Based Complementary and Alternative Medicine, 2019, 1–11. https://doi.org/10.1155/2019/8768210
  • IRAM. (2007). IRAM 15941 – 2: Determinación del color Pfund. Instituto Argentino de Normalización y Certificación.
  • Isla, M. I., Craig, A., Ordoñez, R., Zampini, C., Sayago, J., Bedascarrasbure, E., Alvarez, A., Salomón, V., & Maldonado, L. (2011). Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT - Food Science and Technology, 44(9), 1922–1930. https://doi.org/10.1016/j.lwt.2011.04.003
  • Iurlina, M. O., Saiz, A. I., Fritz, R., & Manrique, G. D. (2009). Major flavonoids of Argentinean honeys. Optimisation of the extraction method and analysis of their content in relationship to the geographical source of honeys. Food Chemistry, 115(3), 1141–1149. https://doi.org/10.1016/j.foodchem.2009.01.003
  • Jandrić, Z., Haughey, S. A., Frew, R. D., McComb, K., Galvin-King, P., Elliott, C. T., & Cannavan, A. (2015). Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chemistry, 189, 52–59. https://doi.org/10.1016/j.foodchem.2014.11.165
  • Juan-Borrás, M., Domenech, E., Hellebrandova, M., & Escriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86–94. https://doi.org/10.1016/j.foodres.2013.11.045
  • Kandasamy, N., & Ashokkumar, N. (2012). Myricetin, a natural flavonoid, normalizes hyperglycemia in streptozotocin-cadmium-induced experimental diabetic nephrotoxic rats. Biomedicine & Preventive Nutrition, 2(4), 246–251. https://doi.org/10.1016/j.bionut.2012.04.003
  • Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chemistry, 146, 548–557. https://doi.org/10.1016/j.foodchem.2013.09.105
  • Kasiotis, K. M., Anagnostopoulos, C., Anastasiadou, P., & Machera, K. (2014). Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. The Science of the Total Environment, 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042
  • Liu, H., Zhang, M., Guo, Y., & Qiu, H. (2016). Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food Chemistry, 204, 56–61. https://doi.org/10.1016/j.foodchem.2016.02.102
  • Malkoc, M., Çakir, H., Kara, Y., Can, Z., & Kolayli, S. (2019). Phenolic composition and antioxidant properties of Anzer honey from Black Sea region of Turkey. Uludağ Arıcılık Dergisi, 19(2), 143–151.
  • Manzanares, A. B., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2014). Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. LWT-Food Science and Technology, 55(2), 572–578.
  • Mărghitaş, L., Dezmirean, D. S., Moise, A., Bobis, O., & Laslo, L. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4), 863–867. https://doi.org/10.1016/j.foodchem.2008.06.055.
  • Mattonai, M., Parri, E., Querci, D., Degano, I., & Ribechini, E. (2016). Development and validation of an HPLC-DAD and HPLC/ESI-MS2 method for the determination of polyphenols in monofloral honeys from Tuscany (Italy). Microchemical Journal, 126, 220–229. https://doi.org/10.1016/j.microc.2015.12.013
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • Mellen, M., Fikselova, M., Mendelova, A., & Hascik, P. (2015). Antioxidant effect of natural honeys affected by their source and origin. Polish Journal of Food and Nutrition Sciences, 65(2), 81–85. https://doi.org/10.1515/pjfns-2015-0020
  • Mondragón-Cortez, P., Ulloa, J. A., Rosas-Ulloa, P., Rodríguez-Rodríguez, R., & Resendiz Vázquez, J. A. (2013). Physicochemical characterization of honey from the West region of México. Cyta - Journal of Food, 11(1), 7–13. https://doi.org/10.1080/19476337.2012.673175
  • Moniruzzaman, M., Amrah Sulaiman, S., & Gan, S. H. (2017). Phenolic acid and flavonoid composition of malaysian honeys. Journal of Food Biochemistry, 41(2), e12282. https://doi.org/10.1111/jfbc.12282
  • Moniruzzaman, M., Chowdhury, M. A. Z., Rahman, M. A., Sulaiman, S. A., & Gan, S. H. (2014). Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. Biomed Research International, 2014, 1–10. (2014). https://doi.org/10.1155/2014/359890
  • Montoya-Pfeiffer, P., León-Bonilla, D., & Nates-Parra, G. (2014). Catálogo de polen en mieles de Apis mellifera provenientes de zonas cafeteras en la Sierra Nevada de Santa Marta, Magdalena. Colombia. Rev. la Acad. Colomb. Ciencias, 38(149), 364–384.
  • Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666. https://doi.org/10.1021/jf803537k
  • Moreira, R. F. A., De Maria, C. A. B., Pietroluongo, M., & Trugo, L. C. (2007). Chemical changes in the non-volatile fraction of Brazilian honeys during storage under tropical conditions. Food Chemistry, 104(3), 1236–1241. https://doi.org/10.1016/j.foodchem.2007.01.055
  • Muñoz, O., Copaja, S., Speisky, H., Peña, R. C., & Montenegro, G. (2007). Contenido de flavonoides y compuestos fenólicos de mieles chilenas e índice antioxidante. Química Nova, 30(4), 848–851. https://doi.org/10.1590/S0100-40422007000400017
  • Nayik, G. A., & Nanda, V. (2016). A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir. LWT, 74, 504–513. https://doi.org/10.1016/j.lwt.2016.08.016
  • Oroian, M., & Ropciuc, S. (2017). Honey authentication based on physicochemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 138, 148–156. https://doi.org/10.1016/j.compag.2017.04.020
  • Oroian, M., Ropciuc, S., & Buculei, A. (2017). Romanian honey authentication based on physico-chemical parameters and chemometrics. Journal of Food Measurement and Characterization, 11(2), 719–725. https://doi.org/10.1007/s11694-016-9441-x
  • Patrignani, M., Fagúndez, G. A., Tananaki, C., Thrasyvoulou, A., & Lupano, C. E. (2018). Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chemistry, 246, 32–40. https://doi.org/10.1016/j.foodchem.2017.11.010
  • Piotrowski, M., Karpiński, P., Pituch, H., Van Belkum, A., & Obuch-Woszczatyński, P. (2017). Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. European Journal of Clinical Microbiology & Infectious Diseases : Official Publication of the European Society of Clinical Microbiology, 36(9), 1661–1664. https://doi.org/10.1007/s10096-017-2980-1
  • Pulcini, P., Allegrini, F., & Festuccia, N. (2006). Fast SPE extraction and LC-ESI-MS-MS analysis of flavonoids and phenolic acids in honey. Apiacta, 41, 21–27.
  • Ruiz-Ruiz, J. C., Matus-Basto, A. J., Acereto-Escoffié, P., & Segura-Campos, M. R. (2017). Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology, 28(6), 1424–1437. https://doi.org/10.1080/09540105.2017.1347148
  • Sancho, M. T., Pascual‐Maté, A., Rodríguez‐Morales, M. A., Osés, E. G., Escriche, S. M., Periche, I., & Fernández‐Muiño, Á. (2016). Critical assessment of antioxidant‐related parameters of honey. International Journal of Food Science & Technology, 51(1), 30–36. https://doi.org/10.1111/ijfs.12988
  • Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry, 118(2), 391–397. https://doi.org/10.1016/j.foodchem.2009.05.001
  • Schievano, E., Tonoli, M., & Rastrelli, F. (2017). NMR quantification of carbohydrates in complex mixtures. A challenge on honey. Analytical Chemistry, 89(24), 13405–13414. https://doi.org/10.1021/acs.analchem.7b03656
  • Silici, S., Sagdic, O., & Ekici, L. (2010). Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chemistry, 121(1), 238–243. https://doi.org/10.1016/j.foodchem.2009.11.078
  • Sixto, A., Mollo, A., & Knochen, M. (2019). Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. Journal of Food Composition and Analysis, 82, 103229. https://doi.org/10.1016/j.jfca.2019.06.001
  • Solayman, M., Islam, M. A., Paul, S., Ali, Y., Khalil, M. I., Alam, N., & Gan, S. H. (2016). Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219–233. https://doi.org/10.1111/1541-4337.12182
  • Stanek, N., & Jasicka-Misiak, I. (2018). HPTLC phenolic profiles as useful tools for the authentication of honey. Food Analytical Methods, 11(11), 2979–2989. https://doi.org/10.1007/s12161-018-1281-3
  • Tanleque-Alberto, F., Juan-Borrás, M., & Escriche, I. (2020). Antioxidant characteristics of honey from Mozambique based on specific flavonoids and phenolic acid compounds. Journal of Food Composition and Analysis, 86, 103377. https://doi.org/10.1016/j.jfca.2019.103377
  • Tette, P. A. S., da Silva Oliveira, F. A., Pereira, E. N. C., Silva, G., de Abreu Glória, M. B., & Fernandes, C. (2016). Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS. Food Chemistry, 211, 130–139. https://doi.org/10.1016/j.foodchem.2016.05.036
  • Tomás‐Barberán, F. A., Martos, I., Ferreres, F., Radovic, B. S., & Anklam, E. (2001). HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of the Science of Food and Agriculture, 81(5), 485–496. https://doi.org/10.1002/jsfa.836
  • Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., Dogan, M., & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124–131. https://doi.org/10.1016/j.indcrop.2012.12.042
  • Tosun, M. (2013). Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chemistry, 138(2–3), 1629–1632. https://doi.org/10.1016/j.foodchem.2012.11.068
  • Toth, T., Kopernická, M., Sabo, R., & Kopernicka, T. (2016). The evaluation of mercury in honey bees and their products from eastern Slovakia. Scientific Papers Animal Science and Biotechnologies, 49(1), 257–260.
  • Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038
  • Yao, L., Datta, N., Tomás-Barberán, F. A., Ferreres, F., Martos, I., & Singanusong, R. (2003). Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chemistry, 81(2), 159–168. doi: https://doi.org/10.1016/S0308-8146(02)00388-6. https://doi.org/10.1016/S0308-8146(02)00388-6
  • Yao, L., Jiang, Y., D'Arcy, B., Singanusong, R., Datta, N., Caffin, N., & Raymont, K. (2004). Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. Journal of Agricultural and Food Chemistry, 52(2), 210–214. https://doi.org/10.1021/jf034990u
  • Zali, S., Jalali, F., Es-Haghi, A., & Shamsipur, M. (2015). Electrospun nanostructured polystyrene as a new coating material for solid-phase microextraction: Application to separation of multipesticides from honey samples. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 1002, 387–393. https://doi.org/10.1016/j.jchromb.2015.07.061
  • Zhao, J., Du, X., Cheng, N., Chen, L., Xue, X., Zhao, J., Wu, L., & Cao, W. (2016). Identification of monofloral honeys using HPLC-ECD and chemometrics. Food Chemistry, 194, 167–174. https://doi.org/10.1016/j.foodchem.2015.08.010
  • Zhou, X., Taylor, M. P., Salouros, H., & Prasad, S. (2018). Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Scientific Reports, 8(1), 1–11.
  • Zuluaga-Domínguez, C. M., Nieto-Veloza, A., & Quicazán-de-Cuenca, M. (2018). Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145–152. https://doi.org/10.1080/00218839.2017.1339521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.