152
Views
3
CrossRef citations to date
0
Altmetric
Sociobiology and behaviour

Unrelated males in societies of a facultatively social bee

ORCID Icon, &
Pages 375-386 | Received 07 Feb 2021, Accepted 26 Jun 2021, Published online: 28 Oct 2021

References

  • Anzenberger, G. (1977). Ethological study of African carpenter bees of the genus Xylocopa (Hymenoptera, Anthophoridae). Ethology, 44, 337–374.
  • Bernasconi, G., & Strassmann, J. E. (1999). Cooperation among unrelated individuals: The ant foundress case. Trends in Ecology & Evolution, 14(12), 477–482. https://doi.org/10.1016/S0169-5347(99)01722-X
  • Blacher, P., Yagound, B., Lecoutey, E., Devienne, P., Chameron, S., & Châline, N. (2013). Drifting behaviour as an alternative reproductive strategy for social insect workers. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20131888. https://doi.org/10.1098/rspb.2013.1888
  • Brockmann, H. J. (1992). Male behavior, courtship and nesting in Trypoxylon (Trypargilum) monteverdeae (Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society, 65, 66–84.
  • Cameron, S. A. (1985). Brood care by male bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 82(19), 6371–6373. https://doi.org/10.1073/pnas.82.19.6371
  • Clutton-Brock, T. (2002). Breeding together: kin selection and mutualism in cooperative vertebrates. Science (New York, N.Y.), 296(5565), 69–72. https://doi.org/10.1126/science.296.5565.69
  • Core Developmental Team, R. (2016). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing.
  • Dew, R. M., Shell, W. A., & Rehan, S. M. (2018). Changes in maternal investment with climate moderate social behaviour in a facultatively social bee. Behavioral Ecology and Sociobiology, 72, 69. https://doi.org/10.1007/s00265-018-2488-4
  • Field, J., Foster, W., Shreeves, G., & Sumner, S. (1998). Ecological constraints on independent nesting in facultatively eusocial hover wasps. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1400), 973–977. https://doi.org/10.1098/rspb.1998.0386
  • Gerling, D., Hurd, P. D., & Hefetz, A. (1982). Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea). Smithsonian Contributions to Zoology, 369, 1–33. https://doi.org/10.5479/si.00810282.369
  • Groom, S. V. C., & Rehan, S. M. (2018). Climate-mediated behavioural variability in facultatively social bees. Biological Journal of the Linnean Society, 125(1), 165–170. https://doi.org/10.1093/biolinnean/bly101
  • Heinze, J. (2016). The male has done his work - the male may go. Current Opinion in Insect Science, 16, 22–27. https://doi.org/10.1016/j.cois.2016.05.005
  • Hogendoorn, K., & Velthuis, H. H. W. (1995). The role of young guards in Xylocopa pubescens. Insectes Sociaux, 42(4), 427–448. https://doi.org/10.1007/BF01242171
  • Hogendoorn, K., & Velthuis, H. H. W. (1999). Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insectes Sociaux, 46(3), 198–207. https://doi.org/10.1007/s000400050135
  • Hughes, W. O., Oldroyd, B. P., Beekman, M., & Ratnieks, F. L. (2008). Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science (New York, N.Y.), 320(5880), 1213–1216. https://doi.org/10.1126/science.1156108
  • Hunt, J. H., & Noonan, K. C. (1979). Larval feeding by male Polistes fuscatus and Polistes metricus (Hymenoptera: Vespidae). Insectes Sociaux, 26(3), 247–251. https://doi.org/10.1007/BF02223803
  • Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x
  • Konovalov, D. A., Manning, C., & Henshaw, M. T. (2004). KINGROUP: A program for pedigree relationship reconstruction and kin group assignments using genetic markers. Molecular Ecology Notes, 4(4), 779–782. https://doi.org/10.1111/j.1471-8286.2004.00796.x
  • Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. S., & Field, J. (2011). Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science (New York, N.Y.), 333(6044), 874–876. https://doi.org/10.1126/science.1205140
  • Lewis, V., & Richards, M. H. (2017). Experimentally induced alloparental care in a solitary carpenter bee. Animal Behaviour, 123, 229–238. https://doi.org/10.1016/j.anbehav.2016.11.003
  • Lucas, E. R., & Field, J. (2011). Active and effective nest defence by males in a social apoid wasp. Behavioral Ecology and Sociobiology, 65(8), 1499–1504. https://doi.org/10.1007/s00265-011-1159-5
  • Maeta, Y., & Sakagami, S. F. (1995). Oophagy and egg replacement in artificially induced colonies of a basically solitary bee, Ceratina (Ceratinidia) okinawana (Hymenoptera, Anthophoridae, Xylocopinae), with a comparison of social behavior among Ceratina, Xylocopa and the Halictine bees. Japanese Journal of Entomology, 63, 347–375.
  • Mason, C. A. (1988). Division of labor and adult interactions in eusocial colonies of two allodapine bee species (Hymenoptera: Anthophoridae). Journal of the Kansas Entomological Society, 61, 477–491.
  • Michener, C. D. (1974). The social behavior of the bees: A comparative study. Harvard University Press.
  • Michener, C. D. (2007). The bees of the world (2nd ed). The Johns Hopkins University Press.
  • Mikát, M., Černá, K., & Straka, J. (2016). Major benefits of guarding behavior in subsocial bees: Implications for social evolution. Ecology and Evolution, 6(19), 6784–6797. https://doi.org/10.1002/ece3.2387
  • Mikát, M., Franchino, C., & Rehan, S. M. (2017). Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behavioral Ecology and Sociobiology, 71, 135. https://doi.org/10.1007/s00265-017-2365-6
  • Mikát, M., Janošík, L., Černá, K., Matoušková, E., Hadrava, J., Bureš, V., & Straka, J. (2019). Polyandrous bee provides extended offspring care biparentally as an alternative to monandry based eusociality. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6238–6243. https://doi.org/10.1073/pnas.1810092116
  • Mikát, M., Waldhauserová, J., Fraňková, T., Čermáková, K., Brož, V., Zeman, Š., Dokulilová, M., & Straka, J. (2020). Only mothers feed mature offspring in European Ceratina bees. Insect Science, 28, 1468–1481. https://doi.org/10.1111/1744-7917.12859
  • Münster-Swendsen, M., & Calabuig, I. (2000). Interaction between the solitary bee Chelostoma florisomne and its nest parasite Sapyga clavicornis – Empty cells reduce the impact of parasites. Ecological Entomology, 25(1), 63–70. https://doi.org/10.1046/j.1365-2311.2000.00225.x
  • Nonacs, P. (2017). Go high or go low? Adaptive evolution of high and low relatedness societies in social Hymenoptera. Frontiers in Ecology and Evolution, 5, 1–13. https://doi.org/10.3389/fevo.2017.00087
  • Okazaki, K. (1987). Life cycle of a subtropical xylocopine bee, Ceratina okinawana, with some related problems. Kontyu, 55, 1–8.
  • Oliveira, R. C., Oi, C. A., Vollet-Neto, A., & Wenseleers, T. (2016). Intraspecific worker parasitism in the common wasp, Vespula vulgaris. Animal Behaviour, 113, 79–85. https://doi.org/10.1016/j.anbehav.2015.12.025
  • Oppenheimer, R. L., & Rehan, S. M. (2020). Inclusive fitness of male and facultatively social female nesting behavior in the socially polymorphic bee, Ceratina australensis (Hymenoptera: Xylocopinae). Annals of the Entomological Society of America, 114, 627–636. https://doi.org/10.1093/aesa/saaa022
  • Pernu, T. K., & Helanterä, H. (2019). Genetic relatedness and its causal role in the evolution of insect societies. Journal of Biosciences, 44, 107. https://doi.org/10.1007/s12038-019-9894-2
  • Queller, D. C., Zacchi, F., Cervo, R., Turillazzi, S., Henshaw, M. T., Santorelli, L. A., & Strassmann, J. E. (2000). Unrelated helpers in a social insect. Nature, 405(6788), 784–787. https://doi.org/10.1038/35015552
  • Rehan, S. M. (2020). Small carpenter bees (Ceratina). In Starr, C. K. (Ed.), Encyclopedia of social insects (pp. 1–4). Springer International Publishing. https://doi.org/10.1007/978-3-319-90306-4_106-1
  • Rehan, S. M., Leys, R., & Schwarz, M. P. (2012). A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS ONE, 7(4), e34690. https://doi.org/10.1371/journal.pone.0034690
  • Rehan, S. M., & Richards, M. H. (2010). Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae). The Canadian Entomologist, 142(1), 65–74. https://doi.org/10.4039/n09-056
  • Rehan, S. M., Richards, M. H., Adams, M., & Schwarz, M. P. (2014). The costs and benefits of sociality in a facultatively social bee. Animal Behaviour, 97, 77–85. https://doi.org/10.1016/j.anbehav.2014.08.021
  • Rehan, S. M., Richards, M. H., & Schwarz, M. P. (2010). Social polymorphism in the Australian small carpenter bee, Ceratina (Neoceratina) australensis. Insectes Sociaux, 57(4), 403–412. https://doi.org/10.1007/s00040-010-0097-y
  • Rehan, S. M., Tierney, S. M., & Wcislo, W. T. (2015). Evidence for social nesting in Neotropical ceratinine bees. Insectes Sociaux, 62(4), 465–469. https://doi.org/10.1007/s00040-015-0425-3
  • Robinson, E. J. H., & Jandt, J. M. (2020). Caste: worker polyethism in social Hymenoptera. In Starr, C. K. (Ed.), Encyclopedia of social insects (pp. 1–12). Springer International Publishing. https://doi.org/10.1007/978-3-319-90306-4_142-1
  • Ross, L., Gardner, A., Hardy, N., & West, S. A. (2013). Ecology, not the genetics of sex determination, determines who helps in eusocial populations. Current Biology, 23(23), 2383–2387. https://doi.org/10.1016/j.cub.2013.10.013
  • Sakagami, S. F., & Maeta, Y. (1977). Some presumably presocial habits of Japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Sociaux, 24(4), 319–343. https://doi.org/10.1007/BF02223784
  • Sakagami, S. F., & Maeta, Y. (1984). Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). Journal of the Kansas Entomological Society, 57, 639–656. https://doi.org/10.2307/25084573
  • Sakagami, S. F., & Maeta, Y. (1987). Multifemale nests and rudimentary castes of an “almost” solitary bee Ceratina flavipes, with additional observations on multifemale nests of Ceratina japonica (Hymenoptera, Apoidea). Kontyu Tokyo, 55, 391–409.
  • Schmid-Hempel, P., Winston, M. L., & Ydenberg, R. C. (1993). Foraging of individual workers in relation to colony state in the social hymenoptera. The Canadian Entomologist, 125(1), 129–160. https://doi.org/10.4039/Ent125129-1
  • Schwarz, M. P., Richards, M. H., & Danforth, B. N. (2007). Changing paradigms in insect social evolution: Insights from Halictine and Allodapine bees. Annual Review of Entomology, 52, 127–150. https://doi.org/10.1146/annurev.ento.51.110104.150950
  • Schwarz, M. P., Tierney, S. M., Rehan, S. M., Chenoweth, L. B., & Cooper, S. J. B. (2011). The evolution of eusociality in allodapine bees: Workers began by waiting. Biology Letters, 7(2), 277–280. https://doi.org/10.1098/rsbl.2010.0757
  • Sen, R., & Gadagkar, R. (2006). Males of the social wasp Ropalidia marginata can feed larvae, given an opportunity. Animal Behaviour, 71(2), 345–350. https://doi.org/10.1016/j.anbehav.2005.04.022
  • Stark, R. E. (1992). Cooperative nesting in the multivoltine large carpenter bee Xylocopa sulcatipes Maa (Apoidea: Anthophoridae): Do helpers gain or lose to solitary females? Ethology, 91(4), 301–310. https://doi.org/10.1111/j.1439-0310.1992.tb00871.x
  • Stubblefield, J. W., & Seger, J. (1994). Sexual dimorphism in the Hymenoptera. In: The differences between the sexes (pp. 71–103). Cambridge University Press.
  • Tallamy, D. W., & Wood, T. K. (1986). Convergence patterns in subsocial insects. Annual Review of Entomology, 31(1), 369–390. https://doi.org/10.1146/annurev.en.31.010186.002101
  • Tepedino, V. J., McDonald, L. L., & Rothwell, R. (1979). Defense against parasitization in mud-nesting Hymenoptera: Can empty cells increase net reproductive output? Behavioral Ecology and Sociobiology, 6(2), 99–104. https://doi.org/10.1007/BF00292555
  • Terzo, M., Rasmont, P. (2011). Atlas of the European Bees: Genus Ceratina [WWW Document]. Atlas Hymenopt. – Atlas Eur. Bees – STEP Proj. Retrieved accessed 25 February, 19 from http://www.atlashymenoptera.net/page.asp?id=192.
  • Veen, J. W., van, Sommeijer, M. J., & Meeuwsen, F. (1997). Behaviour of drones in Melipona (Apidae, Meliponinae). Insectes Sociaux, 44(4), 435–447. https://doi.org/10.1007/s000400050063
  • Velthuis, H. H. W., & Gerling, D. (1983). At the brink of sociality: Interactions between adults of the carpenter bee Xylocopa pubescens spinola. Behavioral Ecology and Sociobiology, 12(3), 209–214. https://doi.org/10.1007/BF00290773
  • Vickruck, J. L., & Richards, M. H. (2017). Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behavioural Processes, 145, 73–80.
  • Wilson, E. O. (1971). The insect societies. Belknap Press of Harvard University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.