520
Views
1
CrossRef citations to date
0
Altmetric
Genetics and Breeding

Breeding for hygienic behavior in honey bees (Apis mellifera): a strong paternal effect

, , , , , & ORCID Icon show all
Pages 419-428 | Received 11 Feb 2022, Accepted 28 Apr 2022, Published online: 16 Nov 2022

References

  • Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071
  • Arathi, H. S., & Spivak, M. (2001). Influence of colony genotypic composition on the performance of hygienic behaviour in the honey bee Apis mellifera L. Animal Behavior, 62(1), 57–66. https://doi.org/10.1006/anbe.2000.1731
  • Baudry, E., Solignac, M., Garnery, L., Gries, M., Cornuet, J., & Koeniger, N. (1998). Relatedness among honeybees (Apis mellifera) of a drone congregation. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1409), 2009–2014. https://doi.org/10.1098/rspb.1998.0533
  • Behrens, D., Huang, Q., Geßner, C., Rosenkranz, P., Frey, E., Locke, B., Moritz, R. F., & Kraus, F. B. (2011). Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecology and Evolution, 1(4), 451–458. https://doi.org/10.1002/ece3.17
  • Bigio, G., Al Toufailia, H., Hughes, W. O. H., & Ratnieks, F. L. W. (2014). The effect of one generation of controlled mating on the expression of hygienic behaviour in honey bees. Journal of Apicultural Research, 53(5), 563–568. https://doi.org/10.3896/IBRA.1.53.5.07
  • Blacquière, T., Boot, W., Calis, J., Moro, A., Neumann, P., & Panziera, D. (2019). Darwinian black box selection for resistance to settled invasive Varroa destructor parasites in honey bees. Biological Invasions, 21(8), 2519–2528. https://doi.org/10.1007/s10530-019-02001-0
  • Boecking, O., Bienefeld, K., & Drescher, W. (2000). Heritability of the Varroa-specific hygienic behaviour in honey bees (Hymenoptera: Apidae). Journal of Animal Breeding and Genetics, 117(6), 417–424. https://doi.org/10.1046/j.1439-0388.2000.00271.x
  • Boot, W. J., Calis, J. N. M., Beetsma, J., Hai, D. M., Lan, N. K., Toan, T. V., Trung, L. Q., & Minh, N. H. (1999). Natural selection of Varroa jacobsoni explains the different reproductive strategies in colonies of Apis cerana and Apis mellifera. Experimental & Applied Acarology, 23(2), 133–144. https://doi.org/10.1023/A:1006050527004
  • Boutin, S., Alburaki, M., Mercier, P.-L., Giovenazzo, P., & Derome, N. (2015). Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genomics, 16, 500. https://doi.org/10.1186/s12864-015-1714-y
  • Brascamp, E. W., & Bijma, P. (2014). Methods to estimate breeding values in honey bees. Genetics, selection, evolution 46(1), 53. https://doi.org/10.1186/s12711-014-0053-9
  • Bubalo, D., Pechhacker, H., Licek, E., Kezic, N., & Sulimanovic, D. (2005). The effect of Varroa destructor infestation on flight activity and mating efficiency of drones (Apis mellifera L.). Vet. Med. Austria, 92, 11–15.
  • Büchler, R., Androonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A., & Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. In Dietemann V, Ellis JD, and Neumann P (Eds), Coloss Beebook I: Standard Methods for Apis mellifera research. IBRA. https://doi.org/10.3896/IBRA.1.52.1.07
  • Büchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41(3), 393–408. https://doi.org/10.1051/apido/2010011
  • Büchler, R., Drescher, W., & Tornier, I. (1992). Grooming behaviour of Apis cerana, Apis mellifera and Apis dorsata and its effect on the parasitic mites Varroa jacobsoni and Tropilaelaps clareae. Experimental and Applied Acarology, 16(4), 313–319. https://doi.org/10.1007/BF01218573
  • Collins, A. M. (1986). Quantitative Genetics (pp. 426). Academic Press. Inc.
  • de Mattos, I. M., de Jong, D., & Soares, A. E. E. (2016). Island population of European honeybees in Northeastern Brazil that have survived Varroa infestations for over 30 years. Apidologie, 47(6), 818–827. https://doi.org/10.1007/s13592-016-0439-5
  • Dietemann, V., Pflugfelder, J., Anderson, D., Charrière, J.-D., Chejanovsky, N., Dainat, B., de Miranda, J., Delaplane, K., Dillier, F.-X., Fuch, S., Gallmann, P., Gauthier, L., Imdorf, A., Koeniger, N., Kralj, J., Meikle, W., Pettis, J., Rosenkranz, P., Sammataro, D., … Neumann, P. (2012). Varroa destructor: Research avenues towards sustainable control. Journal of Apicultural Research, 51(1), 125–132. https://doi.org/10.3896/IBRA.1.51.1.15
  • Duay, P., De Jong, D., & Engels, W. (2002). Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genetics and Molecular Research, 1(3), 227–232.
  • Erez, T., Bonda, E., Cahanov, P., Rueppell, O., Wagoner K., Chejanovsky, N., & Soroker V. (2022). Multiple benefits of breeding honey bees for hygienic behavior. Journal of the Insect Pathology, 193. https://doi.org/10.1016/j.jip.2022.107788
  • Estoup, A., Solignac, M., & Cornuet, J. M. (1994). Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proceedings of the Royal Society B: Biological Sciences, 258, 1–7. https://doi.org/10.1098/rspb.1994.0133
  • Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014
  • Glinski, Z., & Jarosz, J. (1984). Alterations in haemolymph proteins of drone honey bee larvae parasitized by Varroa jacobsoni. Apidologie, 15(3), 329–338. https://doi.org/10.1051/apido:19840305
  • Gray, A., Brodschneider, R., Adjlane, N., Ballis, A., Brusbardis, V., Charrière, J.-D., Chlebo, R., F. Coffey, M., Cornelissen, B., Amaro da Costa, C., Csáki, T., Dahle, B., Danihlík, J., Dražić, M. M., Evans, G., Fedoriak, M., Forsythe, I., de Graaf, D., Gregorc, A., … Soroker, V. (2019). Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. Journal of Apicultural Research, 58(4), 479–485. https://doi.org/10.1080/00218839.2019.1615661
  • Gray, A., Adjlane, N., Arab, A., Ballis, A., Brusbardis, V., Charrière, J.-D., Chlebo, R., Coffey, M. F., Cornelissen, B., Amaro da Costa, C., Dahle, B., Danihlík, J., Dražić, M. M., Evans, G., Fedoriak, M., Forsythe, I., Gajda, A., de Graaf, D. C., Gregorc, A., … Brodschneider, R. (2020). Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. Journal of Apicultural Research, 59(5), 744–751. https://doi.org/10.1080/00218839.2020.1797272
  • Harbo, J. R., & Harris, J. W. (1999). Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). Journal of Economic Entomology, 92(2), 261–265. https://doi.org/10.1093/jee/92.2.261
  • Harbo, J. R., & Harris, J. W. (2001). Resistance to Varroa destructor (Mesostigmata: Varroidae) when mite-resistant queen honey bees (Hymenoptera: Apidae) were free-mated with unselected drones. Journal of Economic Entomology, 94(6), 1319–1323. https://doi.org/10.1603/0022-0493-94.6.1319
  • Hoppe, A., Du, M., Bernstein, R., Tiesler, F. K., Kärcher, M., & Bienefeld, K. (2020). Substantial genetic progress in the international Apis mellifera carnica population since the implementation of genetic evaluation. Insects, 11(11), 768–786. https://www.mdpi.com/2075-4450/11/11/768 https://doi.org/10.3390/insects11110768
  • Jaffé, R., & Moritz, R. F. A. (2010). Mating flights select for symmetry in honeybee drones (Apis mellifera). Die Naturwissenschaften, 97(3), 337–343. https://doi.org/10.1007/s00114-009-0638-2
  • Jandricic, S. E., & Otis, G. W. (2003). The potential for using male selection in breeding honey bees resistant to Varroa destructor. Bee World, 84(4), 155–164. https://doi.org/10.1080/0005772X.2003.11099597
  • Jensen, A. B., Palmer, K. A., Chaline, N., Raine, N. E., Tofilski, A., Martin, S. J., Pedersen, B. V., Boomsma, J. J., & Ratnieks, F. L. (2006). Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conservation Genetics, 6(4), 527–537. https://doi.org/10.1007/s10592-005-9007-7
  • Kefuss, J., Vanpoucke, J., Bolt, M., & Kefuss, C. (2015). Selection for resistance to Varroa destructor under commercial beekeeping conditions. Journal of Apicultural Research, 54(5), 563–576. https://doi.org/10.1080/00218839.2016.1160709
  • Koeniger, N., Koeniger, G., & Pechhacker, H. (2005). The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insectes Sociaux, 52(1), 31–35. https://doi.org/10.1007/s00040-004-0763-z
  • Kulincevic, J. M., Rinderer, T. E., Mladjan, V. J., & Buco, S. M. (1992). Five years of bi-directional genetic selection for honey bees resistant and susceptible to Varroa jacobsoni. Apidologie, 23(5), 443–452. https://doi.org/10.1051/apido:19920506
  • Kurze, C., Routtu, J., & Moritz, R. F. A. (2016). Parasite resistance and tolerance in honeybees at the individual and social level. Zoology (Jena, Germany), 119(4), 290–297. https://doi.org/10.1016/j.zool.2016.03.007
  • Laidlaw, HH. Jr, & Page, RE. Jr. (1986). Mating designs. Academic Press. Inc.
  • Lapidge, K. L., Oldroyd, B. P., & Spivak, M. (2002). Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Die Naturwissenschaften, 89(12), 565–568. https://doi.org/10.1007/s00114-002-0371-6
  • Lin, Z., Qin, Y., Page, P., Wang, S., Li, L., Wen, Z., Hu, F., Neumann, P., Zheng, H., & Dietemann, V. (2018). Reproduction of parasitic mites Varroa destructor in original and new honeybee hosts. Ecology and Evolution, 8(4), 2135–2145. https://doi.org/10.1002/ece3.3802
  • Maucourt, S., Fortin, F., Robert, C., & Giovenazzo, P. (2020). Genetic parameters of honey bee colonies traits in a Canadian selection program. Insects, 11(9), 587. https://doi.org/10.3390/insects11090587
  • Meixner, M. D., Kryger, P., & Costa, C. (2015). Effects of genotype, environment, and their interactions on honey bee health in Europe. Current Opinion in Insect Science, 10, 177–184. https://doi.org/10.1016/j.cois.2015.05.010
  • Milne, C. P. (1985). Estimates of the heritability of and genetic correlation between two components of honey bee (Hymenoptera: Apidae). Hygienic behavior: Uncapping and removing. Annals of the Entomological Society of America, 78(6), 841–844. https://doi.org/10.1093/aesa/78.6.841
  • Mondet, F., Alaux, C., Severac, D., Rohmer, M., Mercer, A. R., & Le Conte, Y. (2015). Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Scientific Reports, 5, 10454. https://doi.org/10.1038/srep10454
  • Nganso, B. T., Fombong, A. T., Yusuf, A. A., Pirk, C. W., Stuhl, C., & Torto, B. (2017). Hygienic and grooming behaviors in African and European honeybees—New damage categories in Varroa destructor. PLoS One, 12(6), e0179329. https://doi.org/10.1371/journal.pone.0179329
  • Oxley, P. R., & Oldroyd, B. P. (2010). The genetic architecture of honeybee breeding. Advances in Insect Physiology, 39, 83–118. https://doi.org/10.1016/B978-0-12-381387-9.00003-8
  • Oxley, P. R., Hinhumpatch, P., Gloag, R., & Oldroyd, B. P. (2010a). Genetic evaluation of a novel system for controlled mating of the honeybee, Apis mellifera. The Journal of Heredity, 101(3), 334–338. https://doi.org/10.1093/jhered/esp112
  • Oxley, P. R., Spivak, M., & Oldroyd, B. P. (2010b). Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Molecular Ecology, 19(7), 1452–1461. https://doi.org/10.1111/j.1365-294X.2010.04569.x
  • Page, P., Lin, Z., Buawangpong, N., Zheng, H., Hu, F., Neumann, P., Chantawannakul, P., & Dietemann, V. (2016). Social apoptosis in honey bee superorganisms. Scientific Reports, 6, 27210. https://doi.org/10.1038/srep27210
  • Peng, Y. S., Fang, Y., Xu, S., & Ge, L. (1987). The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology, 49(1), 54–60. https://doi.org/10.1016/0022-2011(87)90125-X
  • Pérez-Sato, J. A., Châline, N., Martin, S. J., Hughes, W. O., & Ratnieks, F. L. (2009). Multi-level selection for hygienic behaviour in honeybees. Heredity, 102(6), 609–615. https://doi.org/10.1038/hdy.2009.20
  • Pernal, S. F., Sewalem, A., & Melathopoulos, A. P. (2012). Breeding for hygienic behaviour in honeybees (Apis mellifera) using free-mated nucleus colonies. Apidologie, 43(4), 403–416. https://doi.org/10.1007/s13592-011-0105-x
  • Plate, M., Bernstein, R., Hoppe, A., & Bienefeld, K. (2019). The importance of controlled mating in honeybee breeding. Genetics, Selection, Evolution, 51(1), 74. https://doi.org/10.1186/s12711-019-0518-y
  • Rangel, J., Traver, B., Stoner, M., Hatter, A., Trevelline, B., Garza, C., Shepherd, T., Seeley, T. D., & Wenzel, J. (2020). Genetic diversity of wild and managed honey bees (Apis mellifera) in Southwestern Pennsylvania, and prevalence of the microsporidian gut pathogens Nosema ceranae and N. apis. Apidologie, 51(5), 802–814. https://doi.org/10.1007/s13592-020-00762-5
  • Rath, W. (1999). Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie, 30(2–3), 97–110. https://doi.org/10.1051/apido:19990202
  • Robertson, A. J., Trost, B., Scruten, E., Robertson, T., Mostajeran, M., Connor, W., Kusalik, A., Griebel, P., & Napper, S. (2014). Identification of developmentally-specific kinotypes and mechanisms of Varroa mite resistance through whole-organism, kinome analysis of honeybee. Frontiers in Genetics, 5, 139. https://doi.org/10.3389/fgene.2014.00139
  • Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
  • Rothenbuhler, W. C. (1964). Behaviour genetics of nest cleaning in honey bees. I. Responses of four inbred lines to disease-killed brood. Animal Behaviour, 12(4), 578–583. https://doi.org/10.1016/0003-3472(64)90082-X
  • Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis: An Official Publication of the Society for Risk Analysis, 22(3), 579–590. https://doi.org/10.1111/0272-4332.00040
  • Sammataro, D., & Avitabile, A. (2011). The beekeeper’s handbook (4th ed.). Comstock Pub. Associates, Ithaca. Cornell University Press.
  • Seltzer, R., Cahanov, P., Kamer, Y., Hetzroni, A., Bieńkowska, M., Hefetz, A., & Soroker, V. (2021). The payoffs and tradeoffs of hygienic behavior: A five year field study on a local population of honey bees. Journal of Apicultural Research, 61, 492–501. https://doi.org/10.1080/00218839.2022.2048947
  • Spivak, M., & Danka, R. G. (2021). Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie, 52(1), 1–16. https://doi.org/10.1007/s13592-020-00784-z
  • Tarpy, D. R., Nielsen, R., & Nielsen, D. I. (2004). A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Sociaux, 51(2), 203–204. https://doi.org/10.1007/s00040-004-0734-4
  • Traynor, K. S., Mondet, F., de Miranda, J. R., Techer, M., Kowallik, V., Oddie, M. A. Y., Chantawannakul, P., & McAfee, A. (2020). Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36(7), 592–606. https://doi.org/10.1016/j.pt.2020.04.004.
  • Tsuruda, J. M., Harris, J. W., Bourgeois, L., Danka, R. G., & Hunt, G. J. (2012). High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees. PLoS One, 7(11), e48276. https://doi.org/10.1371/journal.pone.0048276
  • Unger, P., & Guzmán-Novoa, E. (2010). Maternal effects on the hygienic behavior of Russian X Ontario hybrid honeybees (Apis mellifera L.). The Journal of Heredity, 101(1), 91–96. https://doi.org/10.1093/jhered/esp092
  • Utaipanon, P., Holmes, M. J., Chapman, N. C., & Oldroyd, B. P. (2019). Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: Area sampled and drone mating flight distance. Apidologie, 50(4), 578–592. https://doi.org/10.1007/s13592-019-00671-2
  • Wang, S., Lin, Z., Chen, G., Page, P., Hu, F., Niu, Q., Su, X., Chantawannakul, P., Neumann, P., Zheng, H., & Dietemann, V. (2020). Reproduction of ectoparasitic mites in a coevolved system: Varroa spp.–Eastern honey bees, Apis cerana. Ecology and Evolution, 10(24), 14359–14371. https://doi.org/10.1002/ece3.7038
  • Yañez, O., Jaffé, R., Jarosch, A., Fries, I., Moritz, R. F. A., Paxton, R. J., & de Miranda, J. R. (2011). Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): Implications for sexual transmission of a major honey bee virus. Apidologie, 43(1), 17–30. https://doi.org/10.1007/s13592-011-0088-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.