1,153
Views
0
CrossRef citations to date
0
Altmetric
Pathology and Parasitology

Antibacterial effects of propolis and brood comb extracts on the causative agent of European Foulbrood (Melissococcus plutonius) in honey bees (Apis mellifera)

, , , , &
Pages 813-822 | Received 04 May 2022, Accepted 03 Nov 2022, Published online: 15 Jun 2023

References

  • Anđelković, B., Vujisić, L., Vučković, I., Tešević, V., Vajs, V., & Gođevac, D. (2017). Metabolomics study of Populus type propolis. Journal of Pharmaceutical and Biomedical Analysis, 135, 217–226. https://doi.org/10.1016/j.jpba.2016.12.003
  • Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., & Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 131(3–4), 324–331. https://doi.org/10.1016/j.vetmic.2008.04.011
  • Aurongzeb, M., & Azim, M. K. (2011). Antimicrobial properties of natural honey: A review of literature. Pakistan Journal of Biochemistry and Molecular Biology, 44(3), 118–124.
  • Bailey, L. (1957). The cause of European Foulbrood. Bee World, 38(4), 85–89. https://doi.org/10.1080/0005772X.1957.11094983
  • Bailey, L. (1983). Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp. Journal of Applied Bacteriology, 55(1), 65–69.) https://doi.org/10.1111/j.1365-2672.1983.tb02648.x
  • Bailey, L., & Collins, M. D. (1982). Reclassification of 'Streptococcus pluton’ (White) in a new genus Melissococcus pluton nom. rev.; comb. nov. Journal of Applied Bacteriology, 53(2), 215–217. https://doi.org/10.1111/j.1365-2672.1982.tb04679.x
  • Bastos, E. M. A. F., Simone, M., Jorge, D. M., Soares, A. E. E., & Spivak, M. (2008). In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. Journal of Invertebrate Pathology, 97(3), 273–281. https://doi.org/10.1016/j.jip.2007.10.007
  • Bilikova, K., Popova, M., Trusheva, B., & Bankova, V. (2013). New anti-Paenibacillus larvae substances purified from propolis. Apidologie, 44(3), 278–285. https://doi.org/10.1007/s13592-012-0178-1ï
  • Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: A review. Journal of the American College of Nutrition, 27(6), 677–689. https://doi.org/10.1080/07315724.2008.10719745
  • Borba, R. S., Klyczek, K. K., Mogen, K. L., & Spivak, M. (2015). Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health. The Journal of Experimental Biology, 218(Pt 22), 3689–3699. https://doi.org/10.1242/jeb.127324
  • Borba, R. S., & Spivak, M. (2017). Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11689-w
  • Bulson, L., Becher, M. A., McKinley, T. J., & Wilfert, L. (2021). Long-term effects of antibiotic treatments on honeybee colony fitness: A modelling approach. The Journal of Applied Ecology, 58(1), 70–79. https://doi.org/10.1111/1365-2664.13786
  • Cockerill, F. R., Wikler, M. A., Alder, J., Dudley, M. N., Eliopoulos, G. M., Ferraro, M. J., Hardy, D. J., Hecht, D. W., Hindler, J. A., Patel, J. B., Powell, M., Swenson, J. M., Thomson, R. B., Traczewski, M. M., Turnidge, J. D., Weinstein, M. P., Zimmer, B. L. (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (9th ed., Vol. 32). National Committee for Clinical Laboratory Standards. www.clsi.org.
  • Dahle, B., Sørum, H., Budge, G., & Weideman, J. E. (2011). How to get rid of EFB in Norway. In Proceedings of the 7th COLOSS Conference, p. 20.
  • di Pinto, A., Novello, L., Terio, V., & Tantillo, G. (2011). ERIC-PCR genotyping of Paenibacillus larvae in Southern Italian honey and brood combs. Current Microbiology, 63(5), 416–419. https://doi.org/10.1007/s00284-011-9996-z
  • Drescher, N., Klein, A. M., Neumann, P., Yañez, O., & Leonhardt, S. D. (2017). Inside honeybee hives: Impact of natural propolis on the ectoparasitic mite Varroa destructor and viruses. Insects, 8(1), 15–8010015. https://doi.org/10.3390/insects8010015
  • Eischen, F. A., Graham, R. H., & Cox, R. (2005). Regional distribution of Paenibacillus larvae subspecies larvae, the causative organism of American Foulbrood, in honey bee colonies of the western United States. Journal of Economic Entomology, 98(4), 1087–1093. https://academic.oup.com/jee/article/98/4/1087/883400, https://doi.org/10.1603/0022-0493-98.4.1087
  • Evans, J. D., & Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62–S72. https://doi.org/10.1016/j.jip.2009.06.019
  • Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103, S5–S9. https://doi.org/10.1016/j.jip.2009.06.016
  • Forsgren, E., Budge, G. E., Charrière, J. D., & Hornitzky, M. A. Z. (2013). Standard methods for European foulbrood research. Journal of Apicultural Research, 52(1), 1–14. https://doi.org/10.3896/IBRA.1.52.1.12
  • Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839–843. https://doi.org/10.1016/j.apjtm.2016.07.003
  • Gilliam, M., & Argauer, R. J. (1981). Oxytetracycline residues in surplus honey, brood nest honey, and larvae after medication of colonies of honey bees, Apis mellifera, with antibiotic extender patties, sugar dusts, and syrup sprays. Environmental Entomology, 10(4), 479–482. https://academic.oup.com/ee/article/10/4/479/2392625 https://doi.org/10.1093/ee/10.4.479
  • Grant, K. J., DeVetter, L., & Melathopoulos, A. (2021). Honey bee (Apis mellifera) colony strength and its effects on pollination and yield in highbush blueberries (Vaccinium corymbosum). PeerJ, 9, e11634. https://doi.org/10.7717/peerj.11634
  • Grossar, D., Kilchenmann, V., Forsgren, E., Charrière, J. D., Gauthier, L., Chapuisat, M., & Dietemann, V. (2020). Putative determinants of virulence in Melissococcus plutonius, the bacterial agent causing European foulbrood in honey bees. Virulence, 11(1), 554–567. https://doi.org/10.1080/21505594.2020.1768338
  • Hansen, H., & Brødsgaard, C. J. (1999). American foulbrood: A review of its biology, diagnosis and control. Bee World, 80(1), 5–23. https://doi.org/10.1080/0005772X.1999.11099415
  • Harrop, A. J., Hocknull, M. D., & Lilly, M. D. (1989). Biotransformation in organic solvents: A difference between gram-positive and gram-negative bacteria. Biotechnology Letters, 11(11), 807–810. https://doi.org/10.1007/BF01026102
  • Haseman, L. (1961). How long can spores of American foulbrood live? American Bee Journal, 101, 298–299.
  • Haynes, E., Helgason, T., Young, J. P. W., Thwaites, R., & Budge, G. E. (2013). A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants. Environmental Microbiology Reports, 5(4), 525–529. https://doi.org/10.1111/1758-2229.12057
  • Hepburn, H. R., & Kurstjens, S. P. (1988). The combs of honeybees as composite materials. Apidologie, 19(1), 25–36. https://doi.org/10.1051/apido:19880102
  • Huang, S., Zhang, C. P., Wang, K., Li, G. Q., & Hu, F. L. (2014). Recent advances in the chemical composition of propolis. Molecules (Basel, Switzerland), 19(12), 19610–19632. https://doi.org/10.3390/molecules191219610
  • Jaycox, E. R. (1979). Comb foundation: Are we using enough? American Bee Journal, 119(7), 515–516.
  • Johnson, K. S., Eischen, F. A., & Giannasi, D. E. (1994). Chemical composition of North America bee propolis and biological activity towards larvae of greater wax moth (Lepidoptera: Pyralidae). Journal of Chemical Ecology, 20(7), 1783–1791. https://doi.org/10.1007/BF02059899
  • Johnson, R. M., Ellis, M. D., Mullin, C. A., & Frazier, M. (2010). Pesticides and honey bee toxicity - USA. Apidologie, 41(3), 312–331. https://doi.org/10.1051/apido/2010018
  • Koenig, J. P., Boush, G. M., & Erickson, E. H. (1986). Effect of type of brood comb on chalk brood disease in honeybee colonies. Journal of Apicultural Research, 25(1), 58–62. https://doi.org/10.1080/00218839.1986.11100694
  • Lodesani, M., & Costa, C. (2005). Limits of chemotherapy in beekeeping: Development of resistance and the problem of residues. Bee World, 86(4), 102–109. https://doi.org/10.1080/0005772X.2005.11417324
  • Marcucci, M. C. (1995). Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie, 26(2), 83–99. https://doi.org/10.1051/apido:19950202
  • Masood, F., Thebeau, J. M., Cloet, A., Kozii, I. v., Zabrodski, M. W., Biganski, S., Liang, J., Marta Guarna, M., Simko, E., Ruzzini, A., & Wood, S. C. (2022). Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09796-4
  • Matsuka, M., & Nakamura, J. (1990). Oxytetracycline residues in honey and royal jelly. Journal of Apicultural Research, 29(2), 112–117. https://doi.org/10.1080/00218839.1990.11101206
  • Milbrath, M. (2021). Honey bee bacterial diseases. In T. R. Kane & C. M. Faux (Eds.), Honey bee medicine for the veterinary practitioner (1st ed., pp. 277–293). John Wiley & Sons.
  • Mirzoeva, O. K., Grishanin, R. N., & Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiological Research, 152(3), 239–246. https://doi.org/10.1016/S0944-5013(97)80034-1
  • Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., & Pettis, J. S. (2010). High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PloS One, 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754
  • Nicodemo, D., Malheiros, E. B., De Jong, D., & Couto, R. H. N. (2014). Increased brood viability and longer lifespan of honeybees selected for propolis production. Apidologie, 45(2), 269–275. https://doi.org/10.1007/s13592-013-0249-y
  • Orth, A. J., Curran, E. H., Haas, E. J., Kraemer, A. C., Anderson, A. M., Mason, N. J., & Fassbinder-Orth, C. A. (2022). Land use influences the composition and antimicrobial effects of propolis. Insects, 13(3), 239. https://doi.org/10.3390/insects13030239
  • Pankiw, P., Bailey, L., Gochnauer, T. A., & Hamilton, H. A. (1970). Disinfection of honeybee combs by gamma irradiation. II. European foul brood disease. Journal of Apicultural Research, 9(3), 165–168. https://doi.org/10.1080/00218839.1970.11100263
  • Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. https://doi.org/10.1155/2017/1259510
  • Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules, 24(11), 2047. https://doi.org/10.3390/molecules24112047
  • Quigley, T. (2008). Monitoring the growth of E. coli with light scattering using the SynergyTM 4 Multi-Mode Microplate Reader with Hybrid TechnologyTM. BioTek. www.biotek.com
  • R Core Team. (2019). R: A language and environment for statistical computing. https://www.R-project.org/
  • Rahman, M. M., Richardson, A., & Sofian-Azirun, M. (2010). Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. African Journal of Microbiology Research, 4(16), 1872–1878. https://www.researchgate.net/publication/228662460
  • Raymann, K., Coon, K. L., Shaffer, Z., Salisbury, S., & Moran, N. A. (2018). Pathogenicity of Serratia marcescens strains in honey bees. mBio, 9(5), 01649–01618. https://doi.org/10.1128/mBio
  • Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biology, 15(3), e2001861. https://doi.org/10.1371/journal.pbio.2001861
  • Ristivojević, P., Dimkić, I., Trifković, J., Berić, T., Vovk, I., Milojkovič-Opsenica, D., & Stanković, S. (2016). Antimicrobial activity of Serbian propolis evaluated by means of MIC, HPTLC, bioautography and chemometrics. PloS One, 11(6), e0157097. https://doi.org/10.1371/journal.pone.0157097
  • Roetschi, A., Berthoud, H., Kuhn, R., & Imdorf, A. (2008). Infection rate based on quantitative real-time PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie, 39(3), 362–371. https://doi.org/10.1051/apido:200819
  • Schneider, S. S. (2015). The honey bee colony: Life history. In J. M. Graham (Ed.), The hive and the honey bee (pp. 73–109). Dadant & Sons.
  • Seeley, T. D., & Morse, R. A. (1976). The nest of the honey bee (Apis mellifera L.). Insectes Sociaux, 23(4), 495–512. https://doi.org/10.1007/BF02223477
  • Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research: PTR, 30(6), 894–905. https://doi.org/10.1002/ptr.5605
  • Sforcin, J. M., Fernandes, A., Lopes, C. A. M., Bankova, V., & Funari, S. R. C. (2000). Seasonal effect on Brazilian propolis antibacterial activity. Journal of Ethnopharmacology, 73(1-2), 243–249. www.elsevier.com/locate/jethpharm https://doi.org/10.1016/s0378-8741(00)00320-2
  • Simone, M., Evans, J. D., & Spivak, M. (2009). Resin collection and social immunity in honey bees. Evolution; International Journal of Organic Evolution, 63(11), 3016–3022. https://doi.org/10.1111/j.1558-5646.2009.00772.x
  • Simone-Finstrom, M. D., & Spivak, M. (2012). Increased resin collection after parasite challenge: A case of self-medication in honey bees? PloS One, 7(3), e34601. https://doi.org/10.1371/journal.pone.0034601
  • Simone-Finstrom, M., & Spivak, M. (2010). Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie, 41(3), 295–311. https://doi.org/10.1051/apido/2010016
  • Smith, R. K., & Wilcox, M. M. (1990). Chemical residues in bees, honey and beeswax. American Bee Journal, 130(3), 188–192.
  • Soares, K. O., Oliveira, C. J. B., Rodrigues, A., E., Vasconcelos, P. C., Silva, N. M. V. D., Cunha Filho, O. G. D., Madden, C., & Hale, V. L. (2021). Tetracycline exposure alters key gut microbiota in Africanized honey bees (Apis mellifera scutellata x spp.). Frontiers in Ecology and Evolution, 9, 716660. https://doi.org/10.3389/fevo.2021.716660
  • Sozanski, K., Prado, L. P. d., Mularo, A. J., Sadowski, V. A., Jones, T. H., & Adams, R. M. M. (2020). Venom function of a new species of Megalomyrmex Forel, 1885 (Hymenoptera: Formicidae). Toxins, 12(11), 679. https://doi.org/10.3390/toxins12110679
  • Sporns, P., Kwan, S., & Roth, L. A. (1986). HPLC analysis of oxytetracycline residues in honey. Journal of Food Protection, 49(5), 383–388. http://meridian.allenpress.com/jfp/article-pdf/49/5/383/1657041/0362-028x-49_5_383.pdf https://doi.org/10.4315/0362-028X-49.5.383
  • Sprouffske, K., & Wagner, A. (2016). Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics, 17(1), 172. https://doi.org/10.1186/s12859-016-1016-7
  • Strehle, M. A., Jenke, F., Fröhlich, B., Tautz, J., Riederer, M., Kiefer, W., & Popp, J. (2003). Raman spectroscopic study of spatial distribution of propolis in comb of Apis mellifera carnica (Pollm.). Biopolymers, 72(4), 217–224. https://doi.org/10.1002/bip.10379
  • Svečnjak, L., Chesson, L. A., Gallina, A., Maia, M., Martinello, M., Mutinelli, F., Muz, M. N., Nunes, F. M., Saucy, F., Tipple, B. J., Wallner, K., Waś, E., & Waters, T. A. (2019). Standard methods for Apis mellifera beeswax research. Journal of Apicultural Research, 58(2), 1–108. https://doi.org/10.1080/00218839.2019.1571556
  • Tosi, B., Donini, A., Romagnoli, C., & Bruni, A. (1996). Antimicrobial activity of some commercial extracts of propolis prepared with different solvents. Phytotherapy Research, 10(4), 335–336. https://doi.org/10.1002/(SICI)1099-1573(199606)10:4<335::AID-PTR828>3.0.CO;2-7
  • Velikova, M., Bankova, V., Marcucci, M. C., Tsvetkova, I., & Kujumgiev, A. (2000). Chemical composition and biological activity of propolis from Brazilian Meliponinae. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 55(9–10), 785–789. www.znaturforsch.com https://doi.org/10.1515/znc-2000-9-1018
  • Wilkins, S., Brown, M. A., & Cuthbertson, A. G. S. (2007). The incidence of honey bee pests and diseases in England and Wales. Pest Management Science, 63(11), 1062–1068. https://doi.org/10.1002/ps.1461
  • Wilson, W. T. (1974). Residues of oxytetracycline in honey stored by Apis mellifera. Environmental Entomology, 3(4), 674–676. https://academic.oup.com/ee/article/3/4/674/2395300 https://doi.org/10.1093/ee/3.4.674
  • Wilson, M. B., Brinkman, D., Spivak, M., Gardner, G., & Cohen, J. D. (2015). Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. Journal of Invertebrate Pathology, 124, 44–50. https://doi.org/10.1016/j.jip.2014.10.005
  • Wilson, M. B., Pawlus, A. D., Brinkman, D., Gardner, G., Hegeman, A. D., Spivak, M., & Cohen, J. D. (2017). 3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Phytochemistry, 138, 83–92. https://doi.org/10.1016/j.phytochem.2017.02.020
  • Wilson, M. B., Spivak, M., Hegeman, A. D., Rendahl, A., & Cohen, J. D. (2013). Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees. PLoS One, 8(10), e77512. https://doi.org/10.1371/journal.pone.0077512
  • Wu, J. Y., Anelli, C. M., & Sheppard, W. S. (2011). Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PloS One, 6(2), e14720. https://doi.org/10.1371/journal.pone.0014720