78
Views
0
CrossRef citations to date
0
Altmetric
Original research article

The antiviral activities of Egyptian ethanolic propolis extract and honey bee venom against honey bees infected with multiple viruses in vitro

, , , , , & ORCID Icon show all
Received 20 Jul 2023, Accepted 08 Jan 2024, Published online: 06 Mar 2024

References

  • Abd El Hady, F., & Hegazi, A. (2002). Egyptian Propolis: 2. Chemical Composition, Antiviral and Antimicrobial Activities Of East Nile Delta Propolis. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 57(3-4), 386–394. https://doi.org/10.1515/znc-2002-3-431
  • Abd-El-Samie, E. M., Basuny, N. K., & Seyam, H. (2021). Molecular characterization of viruses found in honey bee (Apis mellifera) colonies infested with Varroa destructor and Nosema cerana in Egypt. Molecular and Cellular Probes, 57, 101731. https://doi.org/10.1016/j.mcp.2021.101731
  • Allen, M., & Ball, B. V. (1996). The incidence and world distribution of the honey bee viruses. Bee World, 77(3), 141–162. https://doi.org/10.1080/0005772X.1996.11099306
  • Amer, A. M., & Aly, U. I. (2019). Antioxidant and antibacterial properties of anise (Pimpinella anisum L.). Egyptian Pharmaceutical Journal, 18(1), 68–73. https://doi.org/10.4103/epj.epj_44_18
  • Amoros, M., Sauvager, F., Girre, L., & Cormier, M. (1992). In vitro antiviral activity of propolis. Apidologie, 23(3), 231–240. hal-00890989. https://doi.org/10.1051/apido:19920306
  • Asgharpour, F., Moghadamnia, A. A., Kazemi, S., Nouri, H. R., & Motallebnejad, M. (2020). Applying GC-MS analysis to identify chemical composition of Iranian propolis prepared with different solvent and evaluation of its biological activity. Caspian Journal of Internal Medicine, 11(2). 191–198. https://doi.org/10.22088/cjim.11.2.191
  • Bankova, V. (2005). Recent trends and important developments in propolis research. Evidence-Based Complementary and Alternative Medicine: ECAM, 2(1), 29–32. https://doi.org/10.1093/ecam/neh059
  • Baracchi, D., Francese, S., & Turillazzi, S. (2011). Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon: Official Journal of the International Society on Toxinology, 58(6-7), 550–557. https://doi.org/10.1016/j.toxicon.2011.08.017
  • Benton, A. W., Morse, R. A., & Stewart, J. B. (1963). Venom collection from honey bees. Science (New York, N.Y.), 142(3589), 228–230. https://doi.org/10.1126/science.142.3589.228
  • Berényi, O., Bakonyi, T., Derakhshifar, I., Köglberger, H., Topolska, G., Ritter, W., Pechhacker, H., & Nowotny, N. (2007). Phylogenetic analysis of Deformed wing virus Genotypes from diverse geographic origins inducates recent global distribution of the virus. Applied and Environmental Microbiology, 73(11), 3605–3611. https://doi.org/10.1128/AEM.00696-07
  • Bonning, B.C. (2020). The Insect Virome: Opportunities and Challenges. Current Issues in Molecular Biology, 34, 1–12. https://doi.org/10.21775/cimb.034.001
  • Borba, R. S., Klyczek, K. K., Mogen, K. L., & Spivak, M. (2015). Seasonal benefits of a natural propolis envelope to honey bee immunity a colony health. Journal Experience Biology, 2018, 3689–3699. https://doi.org/10.1242/jeb.127324
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Calderón, R. A., van Veen, J., Arce, H. G., & Esquivel, M. E. (2003). Presence of Deformed wing virus and Kashmir bee virus in Africanized honey bee colonies in Costarica infested with Varroa destructor. Bee World, 84(3), 112–116. https://doi.org/10.1080/0005772X.2003.11099586
  • Cardoso, E. O., Conti, B. J., Santiago, K. B., Conte, F. L., Oliveira, L. P., Hernandes, R. T., Golim, M. A., & Sforcin, J. M. (2017). Phenolic compounds alone or in combination may be involved in propolis effects on human monocytes. The Journal of Pharmacy and Pharmacology, 69(1), 99–108. https://doi.org/10.1111/jphp.12660
  • Carrillo-Tripp, J., Dolezal, A. G., Goblirsch, M. J., Miller, W. A., Toth, A. L., & Bonning, B. C. (2016). In vivo and in vitro infection dynamics of honey bee viruses. Scientific Reports, 6(1), 22265. https://doi.org/10.1038/srep22265
  • Chantawannakul, P., Ward, L., Boonham, N., & Brown, M. (2006). A scientific note on the detection of honey bee viruses using real-time PCR (TaqMan) in varroa mites collected a thai honey bee (Apis mellifera) apiary. Journal of Invertebrate Pathology, 91(1), 69–73. https://doi.org/10.1016/j.jip.2005.11.001
  • Chen, Y., Evans, J., & Feldlaufer, M. (2006). Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 92(3), 152–159. https://doi.org/10.1016/j.jip.2006.03.010
  • Chen, Y. R., Solter, L. F., Chien, T. Y., Jiang, M. H., Lin, H. F., Fan, H. S., Lo, C., & Wang, C. H. (2009). Characterization of a new insect cell line (NTU-YB) derived from the common grass yellow butterfly, Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera). Journal of Invertebrate Pathology, 102(3), 256–262. https://doi.org/10.1016/j.jip.2009.09.003
  • Choi, J. H., Jang, A. Y., Lin, S., Lim, S., Kim, D., Park, K., Han, S. M., Yeo, J. H., & Seo, H. S. (2015). Melittin, a honey bee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Molecular Medicine Reports, 12(5), 6483–6490. https://doi.org/10.3892/mmr.2015.4275
  • Clermont, A., Pasquali, M., Eickermann, M., Kraus, M., Hoffmann, L., & Beyer, M. (2015). Virus status, varroa levels, and survival of 20 managed honey bee colonies monitored in luxembourg between the summer of 2011 and the spring of 2013. Journal of Apicultural Science, 59(1), 59–73. https://doi.org/10.1515/jas-2015-0005
  • de Graaf, D. C., Braga, M. R. B., de Abreu, R. M. M., Blank, S., Bridts, C. H., De Clerck, L. S., Devreese, B., Ebo, D. G., Ferris, T. J., Hagendorens, M. M., Jacomini, D. L. J., Kanchev, I., Kokot, Z. J., Matysiak, J., Mertens, C., Sabato, V., Van Gasse, A. L., & Van Vaerenbergh, M. (2020). Standard methods for Apismellifera venom research. Journal of Apicultural Research, 60(4), 1–31. https://doi.org/10.1080/00218839.2020.1801073
  • Drago, L., De Vecchi, E., Nicola, L., & Gismondo, M. R. (2007). In vitro antimicrobial activity of a novel propolis formulation (Actichelated propolis). Journal of Applied Microbiology, 103(5), 1914–1921. https://doi.org/10.1111/j.1365-2672.2007.03421.x
  • Drescher, N., Klei, A., Neumann, P., Yañez, O., & Leonhardt, S. (2017). Inside Honey bee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. Insects, 8(1), 15. https://doi.org/10.3390/insects8010015
  • Fernández, N. J., Porrini, M. P., Podaza, E. A., Damiani, N., Gende, L. B., & Eguaras, M. J. (2014). A scientific note on the first report of honey bee venom inhibiting Paenibacillus larvae growth. Apidologie, 45(6), 719–721. https://doi.org/10.1007/s13592-014-0289-y
  • Fokt, H., Pereira, A., Ferreira, A., Cunha, A., & Aguiar, C. (2010). How do bees prevent hive infections? The antimicrobial properties of propolis. Current Res. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1, 481–494. ID: 33334442.
  • Fujiyuki, T., Takeuchi, H., Ono, M., Ohka, S., Sasaki, T., Nomoto, A., & Kubo, T. (2004). Novel insect picrna-like virus identified in the brains of aggressive worker honey bee s. Journal of Virology, 78(3), 1093–1100. https://doi.org/10.1128/JVI.78.3.1093-1100.2004
  • Gekker, G., Hu, S., Spivak, M., Lokensgard, J. R., & Peterson, P. K. (2005). Anti-HIV-1 activity of propolis in CD4+ lymphocyte and microglial cell cultures. Journal of Ethnopharmacology, 102(2), 158–163. https://doi.org/10.1016/j.jep.2005.05.045
  • Genersch, E., Gisder, S., Hedtke, K., Hunter, W. B., Möckel, N., & Müller, U. (2013). Standard Methods for cell cultures in Apis mellifera research. Journal of Apicultural Research, 52(1), 1–8. https://doi.org/10.3896/IBRA.1.52.1.02
  • Ghallab, D. S., Mohyeldin, M. M., Shawky, E., Metwally, A. M., & Ibrahim, R. S. (2021). Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. LWT, 136, 110298. https://doi.org/10.1016/j.lwt.2020.110298
  • Giauffret, A., Quiot, J. M., Vago, C., & Poutier, F. (1967). In vitro culture of cells of bee. CR Acad Sci. Hebd. Seances. Academic Science., 265, 800–803.
  • Goblirsch, M. J., Spivak, M. S., & Kurtti, T. J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS One, 8(7), e69831. https://doi.org/10.1371/journal.pone.0069831
  • Goulson, D., & Hughes, W. O. H. (2015). Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biological Conservation, 191, 10–19. https://doi.org/10.1016/j.biocon.2015.06.023
  • Guillaume, C., Calzada, C., Lagarde, M., Schrével, J., & Deregnaucourt, C. (2006). Interplay between lipoproteins and bee venom phospolipase A2 in relation to anti- plasmodium toxicity. Journal of Lipid Research, 47(7), 1493–1506. https://doi.org/10.1194/jlr.M600111-JLR200
  • Guo, Y., Goodman, C. L., Stanley, D. W., & Bonning, B. C. (2020). Cell Lines for Honey Bee Virus, Res. Viruses, 12(2), 236–252. https://doi.org/10.3390/v12020236
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment. editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symptoms Serial., 41 95–98 https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
  • Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119(2), 203–210. https://doi.org/10.1016/0022-1759(89)90397-9
  • Hegazi, A. G., & El Hady, F. K. (2001). Egyptian Propolis: 1-Antimicrobial Activity and Chemical Composition of Upper Egypt Propolis. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 56(1-2), 82–88. https://doi.org/10.1515/znc-2001-1-214
  • Hewawaduge, C. Y., Lee, B. H., Kim, T. H., Uddin, M. B., Kim, J. H., Kim, C. G., & Lee, J. S. (2016). Phospholipase A2 isolated from the venom of honey bees prevents viral attachment in mammalian cells. Journal of Biomedical Translational Research, 17(3), 75–78. https://doi.org/10.12729/jbtr.2016.17.3.075
  • Hood, J. L., Jallouk, A. P., Campbell, N., Ratner, L., & Wickline, S. A. (2013). Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy, 18(1), 95–103. https://doi.org/10.3851/IMP2346
  • Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., & Shao, H. (2021). Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins, 13(7), 495. https://doi.org/10.3390/toxins13070495
  • Hunter, W. B. (2010). Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae). In Vitro Cellular & Developmental Biology. Animal, 46(2), 83–86. https://doi.org/10.1007/s11626-009-9246-x
  • Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings. Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
  • Kokot, Z. J., Matysiak, J., Kłs, J., Kędzia, B., & Hołderna-Kędzia, E. (2009). Application of principal Components Analysis for evaluation of chemical and antimicrobial properties of honey bee (Apis mellifera) Venom. Journal of Apicultural Research, 48(3), 168–175. https://doi.org/10.3896/IBRA.1.48.3.04
  • Koo, H., Rosalen, P. L., Cury, J. A., Park, Y. K., & Bowen, W. H. (2002). Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyl transferase activity. Antimicrobial Agents and Chemotherapy, 46(5), 1302–1309. https://doi.org/10.1128/AAC.46.5.1302-1309.2002
  • Kubiliene, L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K., Kubilius, R., Kasparaviciene, G., & Savickas, A. (2015). Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complementary and Alternative Medicine, 15(1), 156. https://doi.org/10.1186/s12906-015-0677-5
  • Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. (1999). Antibacterial, Antifungal and Antiviral Activity of Propolis of Different Geographic Origin. Journal of Ethnopharmacology, 64(3), 235–240. https://doi.org/10.1016/S0378-8741(98)00131-7
  • Kukielka, D., Esperón, F., Higes, M., & Sánchez-Vizcaíno, J. M. (2008). A sensitive one-step real-time RT-PCR method for detection of Deformed wing virus and Black queen cell virus in honey bee Apis mellifera. Journal of Virological Methods, 147(2), 275–281. https://doi.org/10.1016/j.jviromet.2007.09.008
  • Lanzi, G., de Miranda, J. R., Boniotti, M. B., Cameron, C. E., Lavazza, A., Capucci, L., Camazine, S. M., & Rossi, C. (2006). Molecular and biological characterization of Deformed wing virus of honey bees (Apis mellifera L. Journal of Virology, 80(10), 4998–5009.) https://doi.org/10.1128/JVI.80.10.4998-5009.2006
  • Lôbo de Araújo, A., & Radvanyi, F. (1987). Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon: Official Journal of the International Society on Toxinology, 25(11), 1181–1188. https://doi.org/10.1016/0041-0101(87)90136-x
  • Mckenna, W. (1993). Killer bees: What the allergist should know. Pediatr. Asthma. Aller. Imunology, 6(4), 275–285. https://doi.org/10.1089/pai.1992.6.275
  • Michael, D. O., & Laurie, A. P. (1995). Melittin synthesis in the venom system of the honey bee (Apis mellifera L.). Toxicon, 33(9), 1181–1188.
  • Moritz, R., de Miranda, J., Fries, I., Le Conte, Y., Neumann, P., & Paxton, R. (2010). Research strategies to improve honey bee health in Europe. Apidologie, 41(3), 227–242. https://doi.org/10.1051/apido/2010010
  • Ng, T. B., Wong, J. H., Tam, C., Liu, F., Cheung, C. F., Ng, C. C. W., Tse, R., Tse, T. F., Chan, H., Preedy, V. R., & Watson, R. R. (2018). Methyl Gallate as an Antioxidant and Anti-HIV Agent. Chapter 14., HIV/AIDS. Academic Press., 161–168. https://doi.org/10.1016/B978-0-12-809853-0.00014-6
  • Orsatti, C. L., Missima, F., Pagliarone, A. C., Bachiega, T. F., Búfalo, M. C., Araújo, J. P. J. R., & Sforcin, J. M. (2010). Propolis immunomodulatory action in vivo on Toll- like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytotherapy Research: PTR, 24(8), 1141–1146. https://doi.org/10.1002/ptr.3086
  • Park, M. H., Jun, H. S., Jeon, J. W., Park, J. K., Lee, B. J., Suh, G. H., Park, J. S., & Cho, C. W. (2018). Preparation and characterization of bee venom-loaded PLGA particles for sustained release. Pharmaceutical Development and Technology, 23(9), 857–864. https://doi.org/10.1080/10837450
  • Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity, 2017, 1259510. https://doi.org/10.1155/2017/1259510
  • Perumal-Samy, R., Gopalakrishnakone, P., Thwin, M. M., Chow, T. K., Bow, H., Yap, E. H., & Thong, T. W. J. (2007). Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. Journal of Applied Microbiology, 102(3), 650–659. https://doi.org/10.1111/j.1365-2672.2006.03161.x
  • Popova, M., Silici, S., Kaftanoglu, O., & Bankova, V. (2005). Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 12(3), 221–228. https://doi.org/10.1016/j.phymed.2003.09.007
  • Pujirahayu, N., Ritonga, H., & Uslinawaty, Z. (2014). Properties and flavonoids content in propolis of some extraction method of raw propolis. International Journal of Pharmacy and Pharmaceutical Sciience, 6, 338–340. https://www.researchgate.net/publication/267031425.
  • Pukrittayakamee, S., Warrell, D. A., Desakorn, V., McMichael, A. J., White, N. J., & Bunnag, D. (1988). The hyaluronidase activities of some Southeast Asian snake venoms. Toxicon: Official Journal of the International Society on Toxinology, 26(7), 629–637. https://doi.org/10.1016/0041-0101(88)90245-0
  • Ramadan, R. H., Mohamed, A. F., & Abd El- Daim, M. S. (2009). Evaluation of antiviral activity of honey bee venom on DNA and RNA virus models Egypt. Academic Journal of Biological Science, 2(1), 247–258. https://doi.org/10.21608/eajbsa.2009.15721
  • Remnant, E. J., Shi, M., Buchmann, G., Blacquière, T., Holmes, E. C., Beekman, M., & Ashe, A. (2017). A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations. Journal of Virology, 91(16), e00158-17. https://doi.org/10.1128/JVI.00158-17
  • Ripari, N., Sartori, A. A., da Silva, H. M., Conte, F. L., Tasca, K. I., Santiago, K. B., & Sforcin, J. M. (2021). Propolis antiviral and immunomodulatory activity: A review and perspectives for COVID-19 treatment. The Journal of Pharmacy and Pharmacology, 73(3), 281–299. https://doi.org/10.1093/jpp/rgaa067
  • Ristivojevίc, P., Trifkovίc, J., Gảsίc, U., Andrίc, F., Nedίc, N., Tesίc, Z., & Milojkovίc-Opsenica, D. (2015). Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC–LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochemistry Analysis, 26(2), 127–136. https://doi.org/10.1002/pca.2544
  • Schnitzler, P., Astani, A., & Reichling, J. (2010). Antiviral Effects of Plant-Derived Essential Oils and Pure Oil Components. In Lipids and Essential Oils as Antimicrobial Agents. John Wiley and Sons. 2010239–254. https://doi.org/10.1002/9780470976623
  • Sena-Lopes, A., Bezerra, F. S. B., das Neves, R. N., de Pinho, R. B., de Silva, M. T., Savegnago, L., Collares, T., Seixas, F., Begnini, K., Henriques, J. A. P., Ely, M. R., Rufatto, L. C., Moura, S., Barcellos, T., Padilha, F., Dellagostin, O., & Borsuk, S. (2018). Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis. PloS One, 13(2), e0191797. https://doi.org/10.1371/journal.pone.0191797
  • Seyam, H., Metwally, A. A., El-Deeb, A. H., El-Mohandes, S., Badr, M. S., & Abd-El-Samie, E. M. (2022). Effect of honey bee venom and Egyptian propolis on the honey bee (Apis mellifera L.) health in vivo. Egyptian Journal of Biological Pest Control, 32(1), 78. https://doi.org/10.1186/s41938-022-00580-0
  • Sforcin, J. M., & Bankova, V. (2011). Propolis: Is there a potential for the development of new drugs? Journal of Ethnopharmacology, 133(2), 253–260. https://doi.org/10.1016/j.jep.2010.10.032
  • Shimizu, T., Hino, A., Tsutsumi, A., Park, Y. K., Watanabe, W., & Kurokawa, M. (2008). Anti-influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice. Antiviral Chemistry & Chemotherapy, 19(1), 7–13. https://doi.org/10.1177/095632020801900102
  • Silici, S., & Kutluca, S. (2005). Chemical composition and antibacterial activity of propolis collected by three different races of honey bee s in the same region. Journal of Ethnopharmacology, 99(1), 69–73. https://doi.org/10.1016/j.jep.2005.01.046
  • Simone-Finstrom, M., Borba, R. S., Wilson, M., & Spivak, M. (2017). Propolis Counteracts Some Threats to Honey Bee Health. Insects, 8(2), 46. https://doi.org/10.3390/insects8020046
  • Simone, M., Evans, J. D., & Spivak, M. (2009). Resin Collection and Social Immunity in Honey Bees. Evolution; International Journal of Organic Evolution, 63(11), 3016–3022. https://doi.org/10.1111/j.1558-5646.2009.00772.x
  • Simone-Finstrom, M., & Spivak, M. (2010). Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie, 41(3), 295–311. https://doi.org/10.1051/apido/2010016
  • Socrates, G. (2004). Infrared and Raman Characteristic Group Frequencies. Tables and Charts. John Wiley & Sons. Corpus ID: 92333066.
  • Spurny, R., Přidal, A., Pálková, L., Kiem, H. K. T., de Miranda, J. R., & Plevka, P. (2017). Virion structure of black queen cell virus, a common honey bee pathogen. Journal of Virology, 91(6), e02100-16. https://doi.org/10.1128/JVI.02100-16
  • Takasi, K., Kikuni, N. B., & Schiller, H. (1994). Electron microscopic and microcalorimetric investigations of the possible mechanism of the antibacterial action of propolis. Provenance Planta, Medecine, 60, 222–227. https://doi.org/10.1055/s-2006-959463
  • Tantillo, G., Bottaro, M., Pinto, A. D., Martella, V., Pinto, P. D., & Terio, V. (2015). Virus infections of honey bees Apis mellifera Italian. Italian Journal of Food Safety, 4(3), 5364. https://doi.org/10.4081/ijfs.2015.5364
  • Tanuwidjaja, I., Svečnjak, L., Gugić, D., Levanić, M., Jurić, S., Vinceković, M., & Mrkonjić Fuka, M. (2021). Chemical Profiling and Antimicrobial Properties of Honey Bee (Apis mellifera L.) Venom. Molecules (Basel, Switzerland), 26(10), 3049. https://doi.org/10.3390/molecules26103049
  • Thangam, B. E., & Rajkumar, S. G. (2002). Purification and characterization of alkaline protease from Alcaligenes faecalis. Biotechnology and Applied Biochemistry, 35(2), 149–154. https://doi.org/10.1042/ba20010013
  • Tosi, B., Donini, A., Romagnoli, C., & Bruni, A. (1996). Antimicrobial Activity of Some Commercial Extracts of Propolis Prepared with Different Solvents. Phytotherapy Research, 10(4), 335–336. PTR828 > 3.0.CO,2-7. 10.1002/(SICI)1099-1573(199606)10:4
  • Uzel, A., Sorkun, K., Onçağ, O., Cogŭlu, D., Gençay, O., & Salih, B. (2005). Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiological Research, 160(2), 189–195. https://doi.org/10.1016/j.micres.2005.01.002
  • van de Loosdrecht, A. A., Beelen, R. H., Ossenkoppele, G. J., Broekhoven, M. G., & Langenhuijsen, M. M. (1994). A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. Journal of Immunological Methods, 174(1-2), 311–320. https://doi.org/10.1016/0022-1759(94)90034-5
  • Wehbe, R., Frangieh, J., Rima, M., El Obeid, D., Sabatier, J. M., & Fajloun, Z. (2019). Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules (Basel, Switzerland), 24(16), 2997. https://doi.org/10.3390/molecules24162997
  • Xia, X., Zhou, B., & Wei, T. (2015). Complete genome of Chinese sacbrood virus from Apis cerana and analysis of the 3C-like cysteine protease. Virus Genes, 50(2), 277–285. https://doi.org/10.1007/s11262-014-1154-9
  • Zidan, H., Mostafa, Z., Ibrahim, M., Haggag, S., Darwish, D., & Elfiky, A. (2018). Venom Composition of Egyptian and Carniolan Honey bee, Apis mellifera L. Affected by Collection Methods. Egyptian Acad. Journal of Biological Science A Entomology, 11(4), 59–71. https://doi.org/10.21608/eajbsa.2018.17733

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.