206
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Guiding students’ explanations across levels of biological organisation: the case of wilted plants

ORCID Icon, &

References

  • Baalmann, W., V. Frerichs, H. Weitzel, H. Gropengießer, and U. Kattmann. 2004. “Schülervorstellungen zu Prozessen der Anpassung - Ergebnisse einer Interviewstudie im Rahmen der Didaktischen Rekonstruktion.” Zeitschrift für Didaktik der Naturwissenschaften 10: 7–28.
  • Beauzamy, L., N. Nakayama, and A. Boudaoud. 2014. “Flowers under Pressure: Ins and Outs of Turgor Regulation in Development.” Annals of Botany 114 (7) (November): 1517–1533. doi:10.1093/aob/mcu187.
  • Bechtel, W., and A. Abrahamsen. 2005. “Explanation: A Mechanist Alternative.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2) (June): 421–441. doi:10.1016/j.shpsc.2005.03.010.
  • Becker, L. B., V. D. E. Welter, E. Aschermann, and J. Großschedl. 2021. “Comprehension-Oriented Learning of Cell Biology: Do Different Training Conditions Affect Students’ Learning Success Differentially?” Education Sciences 11 (8): 438. doi:10.3390/educsci11080438.
  • Boersma, K. T., and C. Geraedts. 2012. The Interpretation of Students’ Lamarckian Explanations. Berlin: ERIDOB.
  • Brandstädter, K., U. Harms, and J. Großschedl. 2012. “Assessing System Thinking Through Different Concept-Mapping Practices.” International Journal of Science Education 34 (14): 2147–2170. doi:10.1080/09500693.2012.716549.
  • Brown, M. H., and R. S. Schwartz. 2009. “Connecting Photosynthesis and Cellular Respiration: Preservice Teachers’ Conceptions.” Journal of Research in Science Teaching 46 (7) (September): 791–812. doi:10.1002/tea.20287.
  • Campbell, N. A., J. B. Reece, L. A. Urry, M. Cain, S. Wasserman, P. V. Minorsky, and R. Jackson, Eds. 2008. Biology. 8. ed. Boston: Pearson.
  • Chi, M. T. H. 2000. “Self-explaining: The Dual Processes of Generating Inference and Repairing Mental Models.” In Advances in Instructional Psychology: Educational Design and Cognitive Science, edited by R. Glaser, 161–238. Vol. 5. Hillsdale: Erlbaum.
  • Chi, M. T. H. 2005. “Commonsense Conceptions of Emergent Processes: Why Some Misconceptions are Robust.” Journal of the Learning Sciences 14 (2): 161–199. doi:10.1207/s15327809jls1402_1.
  • Dauer, J. T., J. L. Momsen, E. B. Speth, S. C. Makohon-Moore, and T. M. Long. 2013. “Analyzing Change in Students’ gene-to-evolution Models in college-level Introductory Biology.” Journal of Research in Science Teaching 50 (6) (August): 639–659. doi:10.1002/tea.21094.
  • Davidowitz, B., and M. Rollnick. 2001. “Effectiveness of Flow Diagrams as a Strategy for Learning in Laboratories.” Australian Journal of Education of Chemistry 57: 18–24.
  • diSessa, A. A. 1988. “Knowledge in Pieces.” In The Jean Piaget Symposium Series. Constructivism in the Computer Age, edited by G. Forman and P. B. Pufall, 49–70, Hillsdale: Erlbaum.
  • Düsing, K., R. Asshoff, and M. Hammann. 2018. “Students’ Conceptions of the Carbon Cycle: Identifying and Interrelating Components of the Carbon Cycle and Tracing Carbon Atoms across the Levels of Biological Organisation.” Journal of Biological Education 53 (1): 110–125. doi:10.1080/00219266.2018.1447002.
  • Engelhardt, P. V., E. G. Corpuz, D. J. Ozimek, and Rebello, N. S. 2004. “The Teaching Experiment — What It Is and What It Isn’t.” AIP Conference Proceedings. 720. AIP. 157–160. doi:10.1063/1.1807278.
  • Eylon, B.-S., and M. C. Linn. 1988. “Learning and Instruction: An Examination of Four Research Perspectives in Science Education.” Review of Educational Research 58 (3): 251–301. doi:10.3102/00346543058003251.
  • Fischer, F., J. Bruhn, C. Gräsel, and H. Mandl. 2002. “Fostering Collaborative Knowledge Construction with Visualization Tools.” Learning and Instruction 12 (2) (April): 213–232. doi:10.1016/s0959-4752(01)00005-6.
  • Geraedts, C. L., and K. T. Boersma. 2006. “Reinventing Natural Selection.” International Journal of Science Education 28 (8): 843–870. doi:10.1080/09500690500404722.
  • Hammann, M. 2019. “Organisationsebenen biologischer Systeme unterscheiden und vernetzen: Empirische Befunde und Empfehlungen für die Praxis.” In Biologiedidaktische Forschung: Erträge für die Praxis, edited by J. Groß, M. Hammann, P. Schmiemann, and J. Zabel, 1–19. Berlin, Heidelberg: Springer Spektrum. doi:10.1007/978-3-662-58443-9_5.
  • Hammann, M. 2020. “Wissensstrukturansätze in der Schülervorstellungsforschung.” In Biologiedidaktische Vorstellungsforschung: Zukunftsweisende Praxis, edited by B. Reinisch, K. Helbig, and D. Krüger, 43–54. Berlin, Heidelberg: Springer Spektrum. doi:10.1007/978-3-662-61342-9_4.
  • Haskel‐Ittah, M., R. G. Duncan, L. Vázquez‐Ben, and A. Yarden. 2019. “Reasoning about Genetic Mechanisms: Affordances and Constraints for Learning.” Journal of Research in Science Teaching 57 (3): 342–367. doi:10.1002/tea.21595.
  • Hawk, P. P. 1986. “Using Graphic Organizers to Increase Achievement in Middle School Life Science.” Science Education 70 (1): 81–87. doi:10.1002/sce.3730700110.
  • Heinze-Fry, J. A., and J. D. Novak. 1990. “Concept Mapping Brings long-term Movement toward Meaningful Learning.” Science Education 74 (4): 461–472. doi:10.1002/sce.3730740406.
  • Jördens, J., R. Asshoff, H. Kullmann, and M. Hammann. 2016. “Providing Vertical Coherence in Explanations and Promoting Reasoning across Levels of Biological Organization When Teaching Evolution.” International Journal of Science Education 38 (6): 960–992. doi:10.1080/09500693.2016.1174790.
  • Knippels, M. C. P. J. 2002. Coping with the Abstract and Complex Nature of Genetics in Biology Education - the Yoyo Teaching and Learning Strategy. Vol. 43. Utrecht: CD-β Press.
  • Knippels, M. C. P. J., and A. J. Waarlo. 2018. “Development, Uptake, and Wider Applicability of the Yo-yo Strategy in Biology Education Research: A Reappraisal.” Education Sciences 8 (3) (September): 129. doi:10.3390/educsci8030129.
  • Knippels, M. C. P. J., A. J. Waarlo, and K. T. Boersma. 2005. “Design Criteria for Learning and Teaching Genetics.” Journal of Biological Education 39 (3) ( Sum): 108–112. doi:10.1080/00219266.2005.9655976.
  • Komorek, M., and R. Duit. 2004. “The Teaching Experiment as a Powerful Method to Develop and Evaluate Teaching and Learning Sequences in the Domain of Non‐linear Systems.” International Journal of Science Education 26 (5): 619–633. doi:10.1080/09500690310001614717.
  • Kuckartz, U. 2010. Einführung in die computergestützte Analyse qualitativer Daten. Vol. 3. Wiesbaden: VS Verlag für Sozialwissenschaften.
  • Lakoff, G. 1990. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. Chicago: University of Chicago Press.
  • Landis, J. R., and G. G. Koch. 1977. “The Measurement of Observer Agreement for Categorical Data.” Biometrics 33 (1) (March): 159–174. doi:10.2307/2529310.
  • Linn, M. C., and L. Muilenburg. 1996. “Creating Lifelong Science Learners: What Models Form a Firm Foundation?” Educational Researcher 25 (5): 18–24. doi:10.3102/0013189X025005018.
  • Lombrozo, T. 2006. “The Structure and Function of Explanations.” Trends in Cognitive Sciences 10 (10) (October): 464–470. doi:10.1016/j.tics.2006.08.004.
  • Machamer, P., L. Darden, and C. F. Craver. 2000. “Thinking about Mechanisms.” Philosophy of Science 67 (1): 1–25. doi:10.1086/392759.
  • Moore-Anderson, C. 2021. “Designing a Curriculum for the Networked Knowledge Facet of Systems Thinking in Secondary Biology Courses: A Pragmatic Framework.” Journal of Biological Education 1–16. doi:10.1080/00219266.2021.1909641.
  • Niebert, K., T. Riemeier, and H. Gropengießer. 2013. ”The Hidden Hand that Shapes Conceptual Understanding: Choosing Effective Representations for Teaching Cell Division and Climate Change”. in Multiple Representation in Biological Education. edited by D. F. Treagust and C. Y. Tsui, Eds. Vol. 7. 293–310. Dordrecht: Springer. doi: 10.1007/978-94-007-4192-8.
  • Niedersaechsisches Kultusministerium. 2015. Kerncurriculum für das Gymnasium Schuljahrgänge 5-10 Naturwissenschaften. Hannover: Niedersaechsisches Kultusministerium. https://cuvo.nibis.de/cuvo.php?p=download&upload=18.
  • Novak, J. D., and A. J. Cañas (2006). “The Theory Underlying Concept Maps and How to Construct and Use Them.” (Technical Report IHMC CmapTools 2006-01, Issue. http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
  • Novak, J. D., and D. B. Gowin. 1984. Learning How to Learn. Cambridge: Cambridge University Press.
  • Novikoff, A. B. 1945. “The Concept of Integrative Levels and Biology.” Science 101 (2618): 209–215. doi:10.1126/science.101.2618.209. March 2.
  • Reinagel, A., and E. Bray Speth. 2016. “Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes.” CBE—Life Sciences Education 15 (1) ( Spring): ar4. doi:10.1187/cbe.15-04-0105.
  • Schneeweiß, N., and H. Gropengießer. 2019. “Organising Levels of Organisation for Biology Education: A Systematic Review of Literature.” Education Sciences 9 (3): 207. doi:10.3390/educsci9030207.
  • Schneeweiß, N., and H. Gropengießer. 2021. “The Zoom Map: A New Graphic Organizer to Guide Student’s Explanations across the Levels of Biological Organization.” Bioscene 47 (1): 3–14.
  • Schönborn, K. J., and S. Bögeholz. 2013. “Experts’ Views on Translation across Multiple External Representations in Acquiring Biological Knowledge about Ecology, Genetics, and Evolution.” In Multiple Representations in Biological Education, edited by D. Treagust and C. Y. Tsui, Vol. 7, 111–128. Dordrecht: Springer. doi:10.1007/978-94-007-4192-8_7.
  • Schwarz, B., A.-N. Perret-Clermont, A. Trognon, and P. Marro. 2008. “Emergent Learning in Successive Activities - Learning in Interaction in a Laboratory Context.” Pragmatics & Cognition 16 (1): 57–87.
  • Schwendimann, B. A., and M. C. Linn. 2016. “Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education.” Journal of Research in Science Teaching 53 (1) (January): 70–94. doi:10.1002/tea.21244.
  • Southerland, S. A., E. Abrams, C. L. Cummins, and J. Anzelmo. 2001. “Understanding Students’ Explanations of Biological Phenomena: Conceptual Frameworks or p-prims?” Science Education 85 (4) (July): 328–348. doi:10.1002/sce.1013.
  • Steffe, L. P., and Thompson, P. W. 2000. Teaching experiment methodology: Underlying principles and essential elements Lesh, R., R., Kelly, A.E. Research design in mathematics and science education (Hillsdale: Erlbaum) 267–307.
  • Thelen, E., and L. B. Smith. 1994. A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge: MIT Press.
  • Thoday, D. 1918. “On Turgescence and the Absorption of Water by the Cells of Plants.” The New Phytologist 17 (5/6): 108–113. doi:10.1111/j.1469-8137.1918.tb07268.x.
  • Torkar, G., M. Veldin, S. A. Glažar, and A. Podlesek. 2018. “Why Do Plants Wilt? Investigating Students’ Understanding of Water Balance in Plants with External Representations at the Macroscopic and Submicroscopic Levels.” Eurasia Journal of Mathematics, Science and Technology Education 14 (6): 2265–2276. doi:10.29333/ejmste/87119.
  • Unger, B. 2017. Biologie verstehen: Wie Lerner mikrobiell induzierte Phänomene erklären: Eine theoriegeleitete Entwicklung von Lernangeboten im Rahmen der didaktischen Rekonstruktion. Berlin: Logos Verlag.
  • Verhoeff, R. P. 2003. Towards Systems Thinking in Cell Biology Education. Utrecht: CD-β Press.
  • Vollmer, G. 1984. “Mesocosm and Objective Knowledge.” edited by F. M. Wuketits. Concepts and Approaches in Evolutionary Epistemology. Vol. 36. Dordrecht: Springer 69–121. doi: 10.1007/978-94-009-7127-1_4.
  • Wessel, L., and M. Hammann. 2012. “Warum welken Pflanzen?” Unterricht Biologie 35 (380): 16–20.
  • Wilensky, U., and M. Resnick. 1999. “Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World.” Journal of Science Education and Technology 8 (1): 3–19. doi:10.1023/a:1009421303064.
  • Wimsatt, W. C. 2006. “Reductionism and Its Heuristics: Making Methodological Reductionism Honest.” Synthese 151 (3): 445–475. doi:10.1007/s11229-006-9017-0.
  • Zollman, A. 2009. “Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications.” Middle School Journal 41 (2): 4–12. doi:10.1080/00940771.2009.11461707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.