550
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Microstructured Cover Flow Mixer for Hydrothermal Synthesis of ZnO Nanoparticles in Supercritical Water

, , &
Article: 2197465 | Received 15 Sep 2022, Accepted 11 Dec 2022, Published online: 10 May 2023

References

  • Adschiri T, Hakuta Y, Sue K, Arai K. 2001. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J Nanopart Res. 3:227–235. doi: 10.1023/A:1017541705569
  • Adschiri T, Lee Y-W, Goto M, Takami S. 2011. Green materials synthesis with supercritical water. Green Chem. 13:1380–1390. doi: 10.1039/c1gc15158d
  • Altavilla C, Ciliberto E. 2010. Inorganic nanoparticles: synthesis, applications, and perspectives (nanomaterials and their applications). Boca Raton (FL); London; New York (NY): CRC Press.
  • Bénézeth P, Palmer DA, Wesolowski DJ, Xiao C. 2002. New measurements of the solubility of zinc oxide from 150 to 350 °C. J Sol Chem. 31:947–973. doi: 10.1023/A:1021866025627
  • Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH. 2011. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir. 27:6059–6068. doi: 10.1021/la200570n
  • Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ. 2003. Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib. 210:307–317. doi: 10.1016/S0378-3812(03)00168-7
  • Demoisson F, Piolet R, Ariane M, Leybros A, Bernard F. 2014. Influence of the pH on the ZnO nanoparticle growth in supercritical water: experimental and simulation approaches. J Supercrit Fluids. 95:75–83. doi: 10.1016/j.supflu.2014.08.007
  • Erkey C, Türk M. 2021. Synthesis of nanostructured materials in near and/or supercritical fluids: methods, fundamentals and modeling. San Diego (CA): Elsevier.
  • Fernández-García M, Rodriguez JA. 2008. Metal oxide nanoparticles. In: Lukehart CM, Scott RA, editors. Nanomaterials: inorganic and bioinorganic perspectivesm. New York (NY): John Wiley & Sons. p. 453–474.
  • Gruar RI, Tighe CJ, Darr JA. 2013. Scaling-up a confined jet reactor for the continuous hydrothermal manufacture of nanomaterials. Ind Eng Chem Res. 52:5270–5281. doi: 10.1021/ie302567d
  • Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J. 2011. Comparative study of the synthesis of silica nanoparticles in micromixer–microreactor and batch reactor systems. Chem Eng J. 171:674–683. doi: 10.1016/j.cej.2011.05.019
  • Hao Y, Teja AS. 2003. Continuous hydrothermal crystallization of Fe2O3 and Co3O4 nanoparticles. J Mater Res. 18:415–422. doi: 10.1557/JMR.2003.0053
  • Ho PC, Bianchi H, Palmer DA, Wood RH. 2000. Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a flow cell. J Sol Chem. 29:217–235. doi: 10.1023/A:1005146332605
  • Kawasaki S-I, Sue K, Ookawara R, Wakashima Y, Suzuki A, Hakuta Y, Arai K. 2010. Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: experimental synthesis of NiO nanoparticles and CFD simulation. J Supercrit Fluids. 54:96–102. doi: 10.1016/j.supflu.2010.03.001
  • Kraut M, Köbl A, Forconi M, Wenka A, Sue K, Dittmeyer R. to be published.
  • Liu B, Zeng HC. 2003. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc. 125:4430–4431. doi: 10.1021/ja0299452
  • Orita Y, Akizuki M, Oshima Y. 2019. Kinetic analysis of zinc oxide anisotropic growth in supercritical water. J Supercrit Fluids. 154:104609. doi: 10.1016/j.supflu.2019.104609
  • Sato T, Sue K, Suzuki W, Suzuki M, Matsui K, Hakuta Y, Hayashi H, Arai K, Kawasaki S-I, Kawai-Nakamura A, et al. 2008. Rapid and continuous production of ferrite nanoparticles by hydrothermal synthesis at 673 K and 30 MPa. Ind Eng Chem Res. 47:1855–1860. doi: 10.1021/ie071168x
  • Sue K, Aoki M, Sato T, Nishio-Hamane D, Kawasaki S-I, Hakuta Y, Takebayashi Y, Yoda S, Furuya T, Sato T, et al. 2011. Continuous hydrothermal synthesis of nickel ferrite nanoparticles using a central collision-type micromixer: effects of temperature, residence time, metal salt molality, and NaOH addition on conversion, particle size, and crystal phase. Ind Eng Chem Res. 50:9625–9631. doi: 10.1021/ie200036m
  • Sue K, Kawasaki S-i, Suzuki M, Hakuta Y, Hayashi H, Arai K, Takebayashi Y, Yoda S, Furuya T. 2011. Continuous hydrothermal synthesis of Fe2O3, NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673 K and 30 MPa. Chem Eng J. 166:947–953. doi: 10.1016/j.cej.2010.11.080
  • Sue K, Kimura K, Murata K, Arai K. 2004. Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water. J Supercrit Fluids. 30:325–331. doi: 10.1016/j.supflu.2003.09.009
  • Sue K, Sato T, Kawasaki S, Takebayashi Y, Yoda S, Furuya T, Hiaki T. 2010. Continuous hydrothermal synthesis of Fe2O3 nanoparticles using a central collision-type micromixer for rapid and homogeneous nucleation at 673 K and 30 MPa. Ind Eng Chem Res. 49:8841–8846. doi: 10.1021/ie1008597
  • Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T. 2006. Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem. 6:634–638.