136
Views
1
CrossRef citations to date
0
Altmetric
Learning, Instruction, and Cognition

Full-Structured or Supported by Incremental Scaffolds? Effects on Perceived Competence and Motivation

ORCID Icon &

References

  • Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. https://doi.org/10.1002/sce.10118
  • Abdi, A. (2014). The effect of inquiry-based learning method on students’ academic achievement in science course. Universal Journal of Educational Research, 2(1), 37–41. https://doi.org/10.13189/ujer.2014.020104
  • Abels, S. (2015). Scaffolding inquiry-based science and chemistry education in inclusive classroom. In N. L. Yates (Ed.), New developments in science education research (pp.77–95). Nova Science Publishers. https://doi.org/10.1007/978-3-319-22933-1_9
  • Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: Evidence from high and low-performing education systems. International Journal of Science Education, 42(4), 504–525. https://doi.org/10.1080/09500693.2020.1716093
  • Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2016). Help helps, but only so much: Research on help seeking with intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 26(1), 205–223. https://doi.org/10.1007/s40593-015-0089-1
  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749. https://doi.org/10.1080/09500693.2014.930209
  • Arnold, J., Kremer, K., & Mayer, J. (2017). Scaffolding beim Forschenden Lernen [Scaffolding in inquiry-based learning]. Zeitschrift für Didaktik der Naturwissenschaften, 23(1), 21–37. https://doi.org/10.1007/s40573-016-0053-0
  • Australian Curriculum, Assessment and Reporting Authority (2022). The Australian Curriculum. Retrieved from https://australiancurriculum.edu.au/media/4682/science_-_sequence_of_content.pdf
  • Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.
  • Bannert, M. (2009). Promoting self-regulated learning through prompts. Zeitschrift für Pädagogische Psychologie, 23(2), 139–145. https://doi.org/10.1024/1010-0652.23.2.139
  • Bartholomé, T., Stahl, E., Pieschl, S., & Bromme, R. (2006). What matters in help-seeking? A study of help effectiveness and learner-related factors. Computers in Human Behavior, 22(1), 113–129. https://doi.org/10.1016/j.chb.2005.01.007
  • Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–33.
  • Berthold, K., Eysink, T. H. S., & Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37(4), 345–363. https://doi.org/10.1007/s11251-008-9051-z
  • Berthold, K., Nückles, M., & Renkl, A. (2007). Do learning protocols support learning strategies and outcomes? The role of cognitive and metacognitive prompts. Learning and Instruction, 17(5), 564–577. https://doi.org/10.1016/j.learninstruc.2007.09.007
  • Bjønness, B., & Kolstø, S. D. (2015). Scaffolding open inquiry: How a teacher provides students with structure and space. Nordic Studies in Science Education, 11(3), 223–237. https://doi.org/10.5617/nordina.878
  • Blanchard, M. R., Southerland, S. A., Osborne, J. W., Sampson, V. D., Annetta, L. A., & Granger, E. M. (2010). Is inquiry possible in light of accountability? A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory instruction. Science Education, 94(4), 577–616. https://doi.org/10.1002/sce.20390
  • Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15(1), 1–40. https://doi.org/10.1023/A:1021302408382
  • Brosseau-Liard, P. E., Savalei, V., & Li, L. (2012). An investigation of the sample performance of two nonnormality corrections for RMSEA. Multivariate Behavioral Research, 47(6), 904–930. https://doi.org/10.1080/00273171.2012.715252
  • Brosseau-Liard, P. E., & Savalei, V. (2014). Adjusting incremental fit indices for nonnormality. Multivariate Behavioral Research, 49(5), 460–470. https://doi.org/10.1080/00273171.2014.933697
  • Clarebout, G., & Elen, J. (2006). Tool use in computer-based learning environments: Towards a research framework. Computers in Human Behavior, 22(3), 389–411. https://doi.org/10.1016/j.chb.2004.09.007
  • Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42–44. https://doi.org/10.4324/9781315649030-9
  • Damerau, K. (2012). Molekulare und Zell-Biologie im Schülerlabor – Fachliche Optimierung und Evaluation der Wirksamkeit im BeLL Bio (Bergisches Lehr-Lern-Labor Biologie) [Molecular and cell biology in a student laboratory—Optimisation and evaluation of the efficacy in BeLL Bio]. [Doctoral dissertation]. Bergische UniversitätWuppertal.
  • Davis, C. R. (2010). Homogeneity of variance. In N. J. Salkind (Ed.), Encyclopedia of research design (Vol. 1, pp. 577–580). SAGE. https://doi.org/10.4135/9781071812082.n250
  • Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behaviour. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
  • de Jong, T. (2005). The guided discovery principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 215–228). Cambridge University Press. https://doi.org/10.1017/cbo9780511816819.015
  • de Jong, T. (2019). Moving towards engaged learning in STEM domains; There is no simple answer, but clearly a road ahead. Journal of Computer Assisted Learning, 35(2), 153–167. https://doi.org/10.1111/jcal.12337
  • Dohn, N. B. (2013). Situational interest in engineering design activities. International Journal of Science Education, 35(12), 2057–2078. https://doi.org/10.1080/09500693.2012.757670
  • El-Sheikh, A. A., Abonazel, M. R., & Gamil, N. (2017). A review of software packages for structural equation modeling: A comparative study. Applied Mathematics and Physics, 5(3), 85–94.
  • Engeln, K., Mikelskis-Seifert, S., & Euler, M. (2014). Inquiry-based mathematics and science education across Europe: A synopsis of various approaches and their potentials. In C. Bruguière, A. Tiberghien, & P. Clement (Eds.), Topics and trends in current science education (pp. 229–242). Springer. https://doi.org/10.1007/978-94-007-7281-6_14
  • Fang, S. ‑C., Hsu, Y. ‑S., & Hsu, W. H. (2016). Effects of explicit and implicit prompts on students’ inquiry practices in computer-supported learning environments in high school earth science. International Journal of Science Education, 38(11), 1699–1726. https://doi.org/10.1080/09500693.2016.1213458
  • Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). SAGE Publications Ltd.
  • Flick, L., & Lederman, N. (2006). Introduction. In L. Flick & N. Lederman (Eds.), Scientific inquiry and nature of science (pp. ix–xviii). Springer.
  • Franke-Braun, G., Schmidt-Weigand, F., Stäudel, L., & Wodzinski, R. (2008). Aufgaben mit gestuften Lernhilfen—ein besonderes Aufgabenformat zur kognitiven Aktivierung der Schülerinnen und Schüler und zur Intensivierung der sachbezogenen Kommunikation [Tasks with incremental scaffolds—A special task format for the cognitive activation of students and intensification of subject-related communication]. In K. Forschergruppe (Ed.), Lehren – Lernen – Literacy: Bericht 2. Lernumgebungen auf dem Prüfstand: Zwischenergebnisse aus den Forschungsprojekten [Teaching – Learning – Literacy: Report 2. Learning environments on the test bed: Interim results from the research projects] (pp. 27–42). Kassel University Press.
  • Franken, N., Damerau, K., & Preisfeld, A. (2020). “Experimentieren kann ich gut!”-Experimentbezogene Fähigkeitsselbstkonzepte von Lehramtsstudierenden der Fächer Biologie, Chemie und Sachunterricht [‘I'm good at experimenting!’—Experiment-related self-concepts of student teachers in biology, chemistry, and science education]. Zeitschrift für Didaktik der Biologie (ZDB)-Biologie Lehren und Lernen, 24, 48–66.
  • Fretz, E. B., Wu, H.-K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567–589. https://doi.org/10.1023/A:1022400817926
  • Ge, X., & Land, S. M. (2003). Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research and Development, 51(1), 21–38. https://doi.org/10.1007/BF02504515
  • Hardy, I., Jonen, A., Möller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students’ understanding of “floating and sinking”. Journal of Educational Psychology, 98(2), 307–326. https://doi.org/10.1037/0022-0663.98.2.307
  • Harlen, W. (1999). Effective teaching of science. A review of research. Scottish Council for Research in Education.
  • Hodson, D. (1996). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28(2), 115–135. https://doi.org/10.1080/0022027980280201
  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Hughes, A., Galbraith, D., & White, D. (2011). Perceived competence: A common core for self-efficacy and self-concept? Journal of Personality Assessment, 93(3), 278–289. https://doi.org/10.1080/00223891.2011.559390
  • Huitema, B. E. (2011). The analysis of covariance and alternatives. John Wiley & Sons, Inc.
  • Humble, S. (2020). Quantitative analysis of questionnaires: Techniques to explore structures and relationships. Routledge. https://doi.org/10.4324/9780429400469
  • Kalyuga, S. (2013). Effects of learner prior knowledge and working memory limitations on multimedia learning. Procedia-Social and Behavioral Sciences, 83, 25–29. https://doi.org/10.1016/j.sbspro.2013.06.005
  • Kirchhoff, T., Randler, C., & Großmann, N. (2023). Experimenting at an outreach science lab versus at school—Differences in students’ basic need satisfaction, intrinsic motivation, and flow experience. Journal of Research in Science Teaching. https://doi.org/10.1002/tea.21859
  • Kirchhoff, T., Wilde, M., & Großmann, N. (2022). “I've always thought that I was not good at experiments…”—The benefit of non-formal learning in terms of students’ perceived competence. Frontiers in Psychology, 13, 882185. https://doi.org/10.3389/fpsyg.2022.882185
  • Kirschner, P. A., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
  • Klahr, D. (2000). Exploring science. The cognition and development of discovery processes. MIT Press. https://doi.org/10.7551/mitpress/2939.001.0001
  • Kleinert, S., Isaak, R., Textor, A., & Wilde, M. (2021). Die Nutzung gestufter Lernhilfen zur Unterstützung des Experimentierprozesses im Biologieunterricht–eine qualitative Studie [The use of incremental scaffolds to support the experimentation process in the biology classroom: A qualitative study]. Zeitschrift für Didaktik der Naturwissenschaften, 27(1), 59–71. https://doi.org/10.1007/s40573-021-00126-1
  • Korkmaz, S., Göksülük, D., & Zararsiz, G. (2014). Mvn: An R package for assessing multivariate normality. The R Journal, 6(2), 151. https://doi.org/10.32614/RJ-2014-031
  • Kowal, J., & Fortier, M. S. (2000). Testing relationships from the hierarchical model of intrinsic and extrinsic motivation using flow as a motivational consequence. Research Quarterly for Exercise and Sport, 71(2), 171–181. https://doi.org/10.1080/02701367.2000.10608895
  • Krapp, A. (2005). Basic needs and the development of interest and intrinsic motivational orientations. Learning and Instruction, 15(5), 381–395. https://doi.org/10.1016/j.learninstruc.2005.07.007
  • Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3–4), 313–350. https://doi.org/10.1207/s15327809jls0703&4_3
  • Kultusministerkonferenz (2005). Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004 [Educational standards in biology for middle school graduation, Decision from 16/12/2004]. Luchterhand.
  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366
  • Lederman, J. S. (2009). Teaching scientific inquiry: Exploration, directed, guided, and opened-ended levels. In National geographic science: Best practices and research base (pp. 8–20). Hapton-Brown.
  • Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138–147.
  • Marsh, H. W., Martin, A. J., Yeung, A. S., & Craven, R. G. (2017). Competence self-perceptions. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation, second edition. Theory and application (pp. 85–115). Guilford Publications.
  • Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen [Gaining knowledge as scientific problem solving]. In D. Krüger (Ed.), Theorien in der biologiedidaktischen Forschung: Ein Handbuch für Lehramtsstudenten und Doktoranden [Theories in biology didactics research: A handbook for student teachers and doctoral students] (pp. 177–186). Springer. https://doi.org/10.1007/978-3-540-68166-3_16
  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The American Psychologist, 59(1), 14–19. https://doi.org/10.1037/0003-066x.59.1.14
  • McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60(1), 48–58. https://doi.org/10.1080/02701367.1989.10607413
  • Milyavskaya, M., Philippe, F. L., & Koestner, R. (2013). Psychological need satisfaction across levels of experience: Their organization and contribution to general well-being. Journal of Research in Personality, 47(1), 41–51. https://doi.org/10.1016/j.jrp.2012.10.013
  • Müller, F. H., Hanfstingl, B., & Andreitz, I. (2007). Skalen zur motivationalen Regulation beim Lernen von Schülerinnen und Schülern: Adaptierte und ergänzte Version des Academic Self-Regulation Questionnaire (SRQ-A) nach Ryan & Connell. [Scales for motivational regulation in student learning: Adapted and supplemented version of the Academic Self-Regulation Questionnaire (SRQ-A) according to Ryan & Connell.]. Alpen-Adria-Universität.
  • Mustafa, M., Ioannidis, A., Ferreira González, L., Dabrowski, T., & Großschedl, J. (2021). Fostering learning with incremental scaffolds during chemical experimentation: A study on junior high school students working in peer-groups. International Journal of Innovation in Science and Mathematics Education, 29(2), 19–31. https://doi.org/10.30722/IJISME.29.02.002
  • National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academy Press. https://doi.org/10.17226/13165
  • National Research Council (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. National Academies Press. https://doi.org/10.17226/9596
  • Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and Research in Education, 7(2), 133–144. https://doi.org/10.1177/1477878509104318
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of expert community. Journal of Research in Science Teaching, 40(7), 692–720. https://doi.org/10.1002/tea.10105
  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4. https://doi.org/10.1207/S15326985EP3801_1
  • Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapu, T. (2012). Improving students’ inquiry skills through reflection and self-regulation scaffolds. Technology, Instruction, Cognition and Learning, 9(1–2), 81–95.
  • Reeve, J. (2015). Understanding motivation and emotion. John Wiley & Sons.
  • Reid, D. J., Zhang, J., & Chen, Q. (2003). Supporting scientific discovery learning in a simulation environment. Journal of Computer Assisted Learning, 19(1), 9–20. https://doi.org/10.1046/j.0266-4909.2003.00002.x
  • Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground—A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161–197. https://doi.org/10.1080/03057267.2016.1206351
  • Rosseel, Y. (2021). The lavaan tutorial. Department of Data Analysis, Ghent University.
  • Ryan, A. M., & Shin, H. (2011). Help-seeking tendencies during early adolescence: An examination of motivational correlates and consequences for achievement. Learning and Instruction, 21(2), 247–256. https://doi.org/10.1016/j.learninstruc.2010.07.003
  • Ryan, R. M., & Deci, E. L. (2006). Self-regulation and the problem of human autonomy: Does psychology need choice, self-determination, and will? Journal of Personality, 74(6), 1557–1585. https://doi.org/10.1111/j.1467-6494.2006.00420.x
  • Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. Guilford Publications. https://doi.org/10.1521/978.14625/28806
  • Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020.101860
  • Ryan, R. M., & Moller, A. C. (2017). Competence as central, but not sufficient, for high-quality motivation. In A. J. Elliot, C. S. Dweck, & D. S. Yeager (Eds.), Handbook of competence and motivation: Theory and application (pp. 216–238). Guilford Publications.
  • Sadeh, I., & Zion, M. (2012). Which type of inquiry project do high school biology students prefer: Open or guided? Research in Science Education, 42(5), 831–848. https://doi.org/10.1007/s11165-011-9222-9
  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372. https://doi.org/10.1002/sce.10130
  • Schmidt-Borcherding, F., Hänze, M., Wodzinski, R., & Rincke, K. (2013). Inquiring scaffolds in laboratory tasks: An instance of a “worked laboratory guide effect”? European Journal of Psychology of Education, 28(4), 1381–1395. https://doi.org/10.1007/s10212-013-0171-8
  • Schmidt-Weigand, F., Franke-Braun, G., & Hänze, M. (2008). Erhöhen gestufte Lernhilfen die Effektivität von Lösungsbeispielen? Eine Studie zur kooperativen Bearbeitung von Aufgaben in den Naturwissenschaften [Do incremental scaffolds increase the effectiveness of solution examples? A study on cooperative processing of tasks in the sciences]. Unterrichtswissenschaft, 36(4), 365–384.
  • Schmidt-Weigand, F., Hänze, M., & Wodzinski, R. (2009). Complex problem solving and worked examples. Zeitschrift für Pädagogische Psychologie, 23(2), 129–138. https://doi.org/10.1024/1010-0652.23.2.129
  • Schreiber, N., Theyßen, H., & Schecker, H. (2016). Process-oriented and product-oriented assessment of experimental skills in physics: A comparison. In N. Papadouris, A. Hadjigeorgiou, & C. P. Constantinou (Eds.), Insights from research in science teaching and learning (pp. 29–43). Springer. https://doi.org/10.1007/978-3-319-20074-3_3
  • Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46(3), 407–441. https://doi.org/10.3102/00346543046003407
  • Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: The influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812–1831. https://doi.org/10.1080/09500693.2018.1504346
  • Stiller, C., & Wilde, M. (2021). Einfluss gestufter Lernhilfen als Unterstützungsmaßnahme beim Experimentieren auf den Lernerfolg im Biologieunterricht [Influence of incremental scaffolds during experimenting on learning success in biology lessons]. Zeitschrift für Erziehungswissenschaft, 24(3), 743–763. https://doi.org/10.1007/s11618-021-01017-4
  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5
  • Thomas, L., Bennett, S., & Lockyer, L. (2016). Using concept maps and goal-setting to support the development of self-regulated learning in a problem-based learning curriculum. Medical Teacher, 38(9), 930–935. https://doi.org/10.3109/0142159x.2015.1132408
  • Thomas, A., & Müller, F. (2016). Entwicklung und Validierung der Skalen zur motivationalen Regulation beim Lernen [Development and validation of the scales for motivational regulation in learning processes]. Diagnostica, 62(2), 74–84. https://doi.org/10.1026/0012-1924/a000137
  • Wangdi, D., Precharattana, M., & Kanthang, P. (2020). A guided inquiry laboratory to enhance students’ understanding of the law of mechanical energy conservation. International Journal of Innovation in Science and Mathematics Education, 28(1), 29–43. https://doi.org/10.30722/IJISME.28.01.003
  • Wheeler, L. (2012). Open-ended inquiry. The Science Teacher, 79(6), 32.
  • Wichmann, A., & Leutner, D. (2009). Inquiry learning. Zeitschrift für Pädagogische Psychologie, 23(2), 117–127. https://doi.org/10.1024/1010-0652.23.2.117
  • Wilde, M., Bätz, K., Kovaleva, A., & Urhahne, D. (2009). Überprüfung einer Kurzskala intrinsischer Motivation (KIM) [Validation of a short-scale of intrinsic motivation]. Zeitschrift für Didaktik der Naturwissenschaften, 15, 31–45.
  • Wirth, J., Thillmann, H., & Künsting, J. (2008). Das Schülerexperiment im naturwissenschaftlichen Unterricht. Bedingungen der Lernförderlichkeit einer verbreiteten Lehrmethode aus instruktionspsychologischer Sicht [The student experiment in science teaching. Conditions of the learning supportiveness of a widespread teaching method from an instructional psychology perspective]. Zeitschrift für Pädagogik, 54(3), 361–375.
  • Wright, S. P. (1992). Adjusted p-values for simultaneous inference. Biometrics, 48(4), 1005. https://doi.org/10.2307/2532694

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.