229
Views
5
CrossRef citations to date
0
Altmetric
Special Issue Title: The Development of Temporal Cognition

Time Reading in Middle and Secondary School Students: The Influence of Basic-Numerical Abilities

, &
Pages 255-277 | Received 15 Oct 2019, Accepted 22 Apr 2020, Published online: 14 May 2020

References

  • Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100(1), 48–66. doi:10.1037/0022-0663.100.1.48
  • Arzy, S., Adi-Japha, E., & Blanke, O. (2009). The mental time line: An analogue of the mental number line in the mapping of life events. Consciousness and Cognition, 18(3), 781–785. doi:10.1016/j.concog.2009.05.007
  • Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2(3), 213–236. doi:10.1016/0273-2297(82)90012-0
  • Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111(2), 246–267. doi: 10.1016/j.jecp.2011.08.005
  • Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735. doi:10.1016/S0028-3932(98)00002-5
  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447–455. doi: 10.1016/j.jecp.2012.06.004
  • Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775–785. doi:10.1111/desc.12155
  • Barr, C., Doyle, M., Clifford, J., De Leo, T., & Dubeau, C. (2003). There is more to math: A framework for learning and math instruction.
  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199–222. doi:10.1016/j.cognition.2004.09.011
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. ArXiv e-Prints, arXiv:1406. doi:10.18637/jss.v067.i01
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological)), 57(1), 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x
  • Berteletti, I., Man, G., & Booth, J. R. (2015). How number line estimation skills relate to neural activations in single digit subtraction problems. NeuroImage, 107, 198–206. doi:10.1016/j.neuroimage.2014.12.011
  • Bizzaro, M., Giofrè, D., Girelli, L., & Cornoldi, C. (2018). Arithmetic, working memory, and visuospatial imagery abilities in children with poor geometric learning. Learning and Individual Differences, 62, 79–88. doi: 10.1016/j.lindif.2018.01.013
  • Bock, K., Irwin, D. E., Davidson, D. J., & Levelt, W. J. M. (2003). Minding the clock. Journal of Memory and Language, 48(4), 653–685. doi:10.1016/S0749-596X(03)00007-X
  • Bonato, M., Zorzi, M., & Umilta, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews., 36(10), 2257–2273. doi:10.1016/j.neubiorev.2012.08.007
  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189–201. doi:10.1037/0012-1649.41.6.189
  • Boulton-Lewis, G., Wills, L., & Mutch, S. (1997). Analysis of primary school children’s abilities and strategies for reading and recording time form analogue and digital clocks. Mathematics Education Research Journal, 9(2), 136–151. doi:10.1007/BF03217308
  • Bull, R., Marschark, M., Nordmann, E., Sapere, P., & Skene, W. A. (2018). The approximate number system and domain-general abilities as predictors of math ability in children with normal hearing and hearing loss. British Journal of Developmental Psychology, 36(2), 236–254. doi:10.1111/bjdp.12204
  • Burny, E. (2012). Time-related competences in primary education. (PhD), Ghent University, Ghent.
  • Burny, E., Valcke, M., & Desoete, A. (2009). Towards an agenda for studying learning and instruction focusing on time‐related competences in children. Educational Studies, 35(5), 481–492. doi:10.1080/03055690902879093
  • Burny, E., Valcke, M., & Desoete, A. (2012). Clock reading: An underestimated topic in children with mathematics difficulties. Journal of Learning Disabilities, 45(4), 351–360. doi:10.1177/0022219411407773
  • Burny, E., Valcke, M., Desoete, A., & Van Luit, J. E. H. (2013). Curriculum sequencing and the acqusition of clock-reading skills among CHinese and Flemisch children. International Journal of Science and Mathematics Education, 11(3), 761–785. doi:10.1007/s10763-012-9362-z
  • Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455–468New York, NY: Psychology Press.
  • Case, R., Sandieson, R., & Dennis, S. (1986). Two cognitive-developmental approaches to the design of remedial instruction. Cognitive Development, 1(4), 293–333. doi:10.1016/S0885-2014(86)80007-7
  • Cohen, M. J., Ricci, C. A., Kibby, M. Y., & Edmonds, J. E. (2000). Developmental progression of clock face drawing in children. Child Neuropsychology, 6(1), 64–76. doi:10.1076/0929-7049(200003)6:1;1-B;FT064
  • Cowan, R., Donlan, C., Shepherd, D.-L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103(4), 786–803. doi:10.1037/a0024556
  • De Visscher, A., & Noël, M.-P. (2014). The detrimental effect of interference in multiplication facts storing: Typical development and individual differences. Journal of Experimental Psychology: General, 143(6), 2380–2400. doi:10.1037/xge0000029
  • De Visscher, A., Noel, M. P., & De Smedt, B. (2016). The role of physical digit representation and numerical magnitude representation in children’s multiplication fact retrieval. Journal of Experimental Child Psychology, 152, 41–53. doi:10.1016/j.jecp.2016.06.014
  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. doi:10.1016/S0010-9452(08)70002-9
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487–506. doi:10.1080/02643290244000239
  • Denmark, T., & Kepner, H. S. (1980). Basic skills in mathematics: A survey. Journal for Research in Mathematics Education, 11(2), 104–123. doi:10.2307/748903
  • Desoete, A. (2009). Metacognitive prediction and evaluation skills and mathematical learning in third-grade students. Educational Research and Evaluation, 15(5), 435–446. doi:10.1080/13803610903444485
  • Eden, G. F., Wood, F. B., & Stein, J. F. (2003). Clock Drawing in Developmental Dyslexia. Journal of Learning Disabilities, 36(3), 216–228. doi:10.1177/002221940303600302
  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. doi: 10.1016/j.jecp.2014.01.013
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. doi:10.1016/j.tics.2004.05.002
  • Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. Quarterly Journal of Experimental Psychology, 67(8), 1461–1483. doi:10.1080/17470218.2014.927515
  • Foreman, N., Boyd-Davis, S., Moar, M., Korallo, L., & Chappell, E. (2008). Can virtual environments enhance the learning of historical chronology? Instructional Science, 36(2), 155–173. doi:10.1007/s11251-007-9024-7
  • Friedman, W. J., & Laycock, F. (1989). Children’s analog and digital clock knowledge. Child Development, 60(2), 357–371. doi:10.2307/1130982
  • Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., … Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29–43. doi:10.1037/0022-0663.98.1.29
  • Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., … Zumeta, R. O. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101(3), 561–576. doi:10.1037/a0014701
  • Gallagher, A. M. (1998). Gender and antecedents of performance in mathematics testing. Teachers College Record, 100(2), 297–314.
  • Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., & Cahalan, C. (2000). Gender Differences in Advanced Mathematical Problem Solving. Journal of Experimental Child Psychology, 75(3), 165–190. doi: 10.1006/jecp.1999.2532
  • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. doi:10.1037/a0025510
  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive Mechanisms Underlying Achievement Deficits in Children With Mathematical Learning Disability. Child Development, 78(4), 1343–1359. doi:10.1111/j.1467-8624.2007.01069.x
  • Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. doi:10.1037/edu0000159
  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. doi:10.1038/nature07246
  • Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. Cognitive Development, 35, 34–49. doi:10.1016/j.cogdev.2015.02.001
  • Hart, S. A., Logan, J. A. R., Thompson, L., Kovas, Y., McLoughlin, G., & Petrill, S. A. (2016). A latent profile analysis of math achievement, numerosity, and math anxiety in twins. Journal of Educational Psychology, 108(2), 181–193. doi:10.1037/edu0000045
  • Hirsch, S., Lambert, K., Coppens, K., & Moeller, K. (2018). Basic numerical competences in large-scale assessment data: Structure and long-term relevance. Journal of Experimental Child Psychology, 167, 32–48. doi: 10.1016/j.jecp.2017.09.015
  • Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35(1), 1–19. doi:10.1207/S15327906MBR3501_1
  • Jordan, N. C., & Hanich, L. B. (2003). Characteristics of children with moderate mathematics deficiencies: A longitudinal perspective. Learning Disabilities Research and Practice, 18(4), 213–221. doi:10.1111/1540-5826.00076
  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103–119. doi:10.1016/S0022-0965(03)00032-8
  • Kaufmann, L., Handl, P., & Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36(6), 564–573. doi:10.1177/00222194030360060701
  • Kessel, C., & Linn, M. C. (1996). Grades or scores: Predicting future college mathematics peflormance. Educational Measurement: Issues and Practice, 15(4), 10–14. doi:10.1111/j.1745-3992.1996.tb00573.x
  • Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526. doi:10.1016/j.learninstruc.2008.10.002
  • Kuznetsova, A., Brockhoff, P., & Christensen, R. (2015). LmerTest: Tests in linear mixed effects models. R Package Version, 2. doi:10.18637/jss.v082.i13
  • Labrell, F., Mikaeloff, Y., Perdry, H., & Dellatolas, G. (2016). Time knowledge acquisition in children aged 6 to 11 years and its relationship with numerical skills. Journal of Experimental Child Psychology, 143, 1–13. doi: 10.1016/j.jecp.2015.10.005
  • Levin, I., & Gilat, I. (1983). A developmental analysis of early time concepts: The equivalence and additivity of the effect of interfering cues on duration comparisons of young children. Child Development, 54(1), 78–83. doi:10.2307/1129863
  • Link, T., Nuerk, H.-C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. Quarterly Journal of Experimental Psychology, 67(8), 1597–1613. doi:10.1080/17470218.2014.892517
  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75–83. doi:10.1016/j.actpsy.2013.10.008
  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2015). The association between numerical magnitude processing and mental versus algorithmic multi-digit subtraction in children. Learning and Instruction, 35, 42–50. doi:10.1016/j.learninstruc.2014.09.003
  • Long, K., & Kamii, C. (2001). The measurement of time: Children’s construction of transitivity, unit iteration, and conservation of speed. School Science and Mathematics, 101(3), 125–132. doi:10.1111/j.1949-8594.2001.tb18015.x
  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186. doi:10.1111/bjep.12142
  • Ludewig, U., Lambert, K., Dackermann, T., Scheiter, K., & Möller, K. (2019). Influences of basic numerical abilities on graph reading performance, Online First. Psychological Research. doi:10.1007/s00426-019-01144-y
  • Makowski, D. (2018). The psycho package: An efficient and publishing-oriented workflow for psychological science. The Journal of Open Source Software, 3(22), 470. doi:10.21105/joss.00470
  • Moeller, K., Klein, E., & Nuerk, H.-C. (2011). (No) small adults: Children’s processing of carry addition problems. Developmental Neuropsychology, 36(6), 702–720. doi:10.1080/87565641.2010.549880
  • Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H. C. (2011). Early place-value understanding as a precursor for later arithmetic performance—A longitudinal study on numerical development. Research in Developmental Disabilities, 32(5), 1837–1851. doi:10.1016/j.ridd.2011.03.012
  • Monroe, E. E., Orme, M. P., & Erickson, L. B. (2002). Working Cotton: Toward an Understanding of Time. Teaching Children Mathematics, 8(8), 475–479.
  • Piaget, J. (1969). The child’s conception of time. New York: Ballentine.
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. Retrieved from https://www.R-project.org.
  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2, Pt.1), 274–278. doi:10.1037/h0028573
  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other. ? Journal of Educational Psychology, 91(1), 175–189. doi:10.1037/0022-0663.91.1.175
  • Robinson, K. M., Dubé, A. K., & Beatch, J.-A. (2017). Children’s understanding of additive concepts. Journal of Experimental Child Psychology, 156, 16–28. doi:10.1016/j.jecp.2016.11.009
  • Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344–357. doi:10.1111/j.2044-835X.2011.02048.x
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non‐symbolic and symbolic numerical magnitude processing with mathematical competence: A meta‐analysis. Developmental Science, 20(3), e12372. doi:10.1111/desc.12372
  • Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101(2), 359–372. doi:10.1037/a0013840
  • Schneider, M., Thompson, C. A., & Rittle-Johnson, B. (2018). Associations of magnitude comparison and number line estimation with mathematical competence: A comparative review Cognitive development from a strategy perspective: A festschrift for Robert S. Siegler (pp. 100–119). New York, NY: Routledge/Taylor & Francis Group.
  • Sherard, W. H. (1981). Why is geometry a basic skill? The Mathematics Teacher, 74(1), 19–60.
  • Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361. doi:10.1111/desc.12395
  • Siegler, R. S., & Lortie‐Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144–150. doi:10.1111/cdep.12077
  • Siegler, R. S., & McGilly, K. (1989). Strategy choices in children’s time-telling. In I. Levin & D. Zakay (Eds.), Time and human cognition: A life-span perspective (pp. 185–218). Oxford: North-Holland.
  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243. doi:10.1111/1467-9280.02438
  • Siegler, R. S., & Richards, D. D. (1979). Development of time, speed, and distance concepts. Developmental Psychology, 15(3), 288–298. doi:10.1037/0012-1649.15.3.288
  • Swanson, H. L., Lussier, C. M., & Orosco, M. J. (2015). Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. Journal of Learning Disabilities, 48(4), 339–358. doi:10.1177/0022219413498771
  • Tonidandel, S., & LeBreton, J. M. (2015). RWA web: A free, comprehensive, web-based, and user-friendly tool for relative weight analyses. Journal of Business and Psychology, 30(2), 207–216. doi:10.1007/s10869-014-9351-z
  • Tonidandel, S., Lebreton, J. M., & Johnson, J. W. (2009). Determining the statistical significance of relative weights. Psychological Methods, 14(4), 387–399. doi:10.1037/a0017735
  • Träff, U., Skagerlund, K., Olsson, L., & Östergren, R. (2017). Pathways to arithmetic fact retrieval and percentage calculation in adolescents. British Journal of Educational Psychology, 87(4), 647–663. doi:10.1111/bjep.12170
  • Van Steenbrugge, H., Valcke, M., & Desoete, A. (2010). Mathematics learning difficulties in primary education: Teachers’ professional knowledge and the use of commercially available learning packages. Educational Studies, 36(1), 59–71. doi:10.1080/03055690903148639
  • Weiß, R. H. (2006). Grundintelligenztest Skala 2-Revision (CFT 20-R) mit Wortschatztest und Zahlenfolgetest-Revision (WS/ZF-R) (Revision ed.). Göttingen: Hogrefe.
  • Williams, R. F. (2004). Making meaning from a clock: Material artifacts and conceptual blending in time-telling instruction. San Diego: Doctor of Philosophy in Cognitive Science, University of California.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.