379
Views
6
CrossRef citations to date
0
Altmetric
Research papers

Different ways of defining wall shear in smoothed particle hydrodynamics simulations of a dam-break wave

, , , &
Pages 453-464 | Received 21 Mar 2013, Accepted 26 Dec 2013, Published online: 05 Jun 2014

References

  • Cleary, P.W., Prakash, M. (2004). Discrete element modelling and smooth particle hydrodynamics: potential in the environmental sciences. Philos. Trans. R. Soc. 362(1822), 2003–2030. doi: 10.1098/rsta.2004.1428
  • Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A. (2007). Boundary conditions generated by dynamic particles in SPH methods. CMC 5(3), 173–184.
  • Cummins, J.S., Rudman, M. (1999). An SPH projection method. J. Comput. Phys. 152(2), 587–607. doi: 10.1006/jcph.1999.6246
  • Dalrymple, R.A., Knio, O. (2001). SPH modelling of water waves. Proc. of Coastal Dynamics, Lund, 779–787, H. Hanson and M. Larson, eds. American Society of Civil Engineers, Reston.
  • Di Monaco, A., Manenti, S., Gallati, M., Sibilla, S., Agate, G., Guandalini, R. (2011). SPH modeling of solid boundaries through a semi-analytic approach. Eng. Appl. Comp. Fluid Mech. 5(1), 1–15.
  • Džebo, E., Žagar, D., Četina, M., Petkovšek, G. (2012). Simulation of dam-break flow in channel expansion with coupled 2-D/3-D SPH model. Proc. of 7th Int. SPHERIC Workshop, Prato, 403–408. http://cfd.mace.manchester.ac.uk/sph/Proceedings/7thSPHERIC_2012_Paper_Abstracts.pdf
  • Džebo, E., Žagar, D., Četina, M., Petkovšek, G. (2013a). Water level fluctuation in accumulation with SPH method. Proc. of Kuhljevi dnevi, Rogaška Slatina, 33–40, M. Hriberšek and J. Ravnik, eds. Slovensko društvo za mehaniko, Maribor (in Slovenian).
  • Džebo, E., Žagar, D., Četina, M., Petkovšek, G. (2013b). Reducing the computational time of the SPH method with a coupled 2-D/3-D approach. J. Mech. Eng. 59(10), 575–584. doi: 10.5545/sv-jme.2013.944
  • Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D., Kassiotis, C. (2013). Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Meth. Fluids 71(4), 446–472. doi: 10.1002/fld.3666
  • Gingold, R.A., Monaghan, J.J. (1977). Smoothed particle hydrodynamics. Theory and application to non-spherical stars. Mon. Not. Roy. Astron. Soc. Lett. 181, 375–389.
  • Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C., Narayanaswamy, M. (2010). User guide for the SPHysics code. https://wiki.manchester.ac.uk/sphysics/images/SPHysics_v2.2.000_GUIDE.pdf
  • Krzyk, M. (2004). Two-dimensional mathematical modelling of flow in steep streams. PhD Thesis, Department of Environmental Civil Engineering, University of Ljubljana, Slovenia.
  • Krzyk, M., Klasinc, R., Četina, M. (2012). Two-dimensional mathematical modelling of a dam-break wave in a narrow steep stream. J. Mech. Eng. 58(4), 255–262. doi: 10.5545/sv-jme.2010.216
  • Kulasegaram, S., Bonet, J., Lewis, R.W., Profit, M. (2003). A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comp. Mech. 33(4), 316–325. doi: 10.1007/s00466-003-0534-0
  • Lee, E.S., Moulinec, C., Xu, R., Voileau, D., Laurence, D., Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh-free particle method. J. Comp. Phys. 227(18), 8417–8436. doi: 10.1016/j.jcp.2008.06.005
  • Lee, E.S., Violeau, D., Issa, R., Ploix, S. (2010). Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. J. Hydraulic Res. 48(supp. 1), 50–60. doi: 10.1080/00221686.2010.9641245
  • Legiša, D., Rajar, R. (1980). Physical model study of the wave due to instantaneous collapse of the embankment of the reservoir at Kolarjev vrh (HPP Kozjak). Final Report, Water Management Institute, University of Ljubljana, Ljubljana, Slovenia (in Slovenian).
  • Lucy, L.B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013–1024. doi: 10.1086/112164
  • Martin, J.C., Moyce, W.J. (1952). An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. 244(882), 312–324. doi: 10.1098/rsta.1952.0006
  • Monaghan, J.J. (1992). Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574. doi: 10.1146/annurev.aa.30.090192.002551
  • Monaghan, J.J. (1994). Simulating free surface flows with SPH. J. Comp. Phys. 110(2), 399–406. doi: 10.1006/jcph.1994.1034
  • Monaghan, J.J., Kos, A. (1999). Solitary waves on a Cretan beach. J. Waterw. Port Coast. Oc. Eng. 125(3), 145–154. doi: 10.1061/(ASCE)0733-950X(1999)125:3(145)
  • Monaghan, J.J., Lattanzio, J.C. (1985). Refined particle method for astrophysical problems. Astron. Astrophys. 149(1), 135–143.
  • Morris, J.P., Fox, P.J., Shu, Y. (1997). Modeling low Reynolds number incompressible flows using SPH. J. Comp. Phys. 136(1), 214–226. doi: 10.1006/jcph.1997.5776
  • Petkovšek, G., Džebo, E., Četina, M., Žagar, D. (2010). Application of non discrete boundaries with friction to smoothed particle hydrodynamics. J. Mech. Eng. 56(5), 307–315.
  • Rajar, R. (1972). Recherche théorique et expérimentale sur la propagation des ondes de rupture de barrage dans une vallée naturelle. PhD Thesis, Paul Sabatier University, University of Toulouse, France ( in French).
  • Rickenmann, D. (1996). Fliessgeschwindigkeit in Wildbächen und Gebrigsflüssen. Wasser, Energie, Luft – Eau, énergie, air. 88(11–12), 298–304.
  • Rickenmann, D., Hegg, C. (2000). Dynamics of sediments and water in alpine catchments – processes and prediction. Scientific Report WSL, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Swiss Federal Institutes of Technology Domain (ETH Domain), Zürich, Switzerland.
  • Roubtsova, V., Kahawita, R. (2006). The SPH technique applied to free surface flows. Comp. Fluids 35(10), 1359–1371. doi: 10.1016/j.compfluid.2005.08.012
  • Vacondio, R., Rogers, B.D., Stansby, P.K. (2012a). Accurate particlesplitting for smoothed particle hydrodynamics in shallow water with shock capturing. Int. J. Numer. Meth. Fluids 69(8), 1377–1410. doi: 10.1002/fld.2646
  • Vacondio, R., Rogers, B.D., Stansby, P.K. (2012b). Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow water tests. Int. J. Numer. Meth. Fluids 69(1), 226–253. doi: 10.1002/fld.2559
  • Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103. doi: 10.1103/PhysRev.159.98
  • Žagar, D., Džebo, E., Četina, M., Petkovšek, G. (2008). Effects of boundary friction in SPH flow simulations. SPHERIC newsletter, Issue 7. https://wiki.manchester.ac.uk/spheric/index.php/Newsletters
  • Žagar, D., Džebo, E., Četina, M., Petkovšek, G. (2009). Simulations of dam break and flow through a steep valley using SPH. Proc. 33rd IAHR Congress, Vancouver, 1, 171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.