281
Views
19
CrossRef citations to date
0
Altmetric
Research papers

Physical modelling of breaking tidal bores: comparison with prototype data

&
Pages 264-273 | Received 27 Mar 2014, Accepted 12 Nov 2014, Published online: 13 Jan 2015

References

  • Barré de Saint Venant, A. J. C. (1871). Théorie et Equations Générales du Mouvement Non Permanent des Eaux, avec Application aux Crues des Rivières et à l′Introduction des Marées dans leur Lit (2ème Note). Comptes Rendus des séances de l′Académie des Sciences, Paris, France, Séance 17 July 1871, 73, 237–240.
  • Benet, F., & Cunge, J. A. (1971). Analysis of experiments on secondary undulations caused by surge waves in trapezoidal channels. Journal of Hydraulic Research, 9(1), 11–33.
  • Chanson, H. (2010). Unsteady turbulence in tidal bores: Effects of bed roughness. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 136, 247–256. doi:10.1061/(ASCE)WW.1943-5460.0000048
  • Chanson, H. (2011). Tidal bores, Aegir, Eagre, Mascaret, Pororoca: theory and observations. Singapore: World Scientific.
  • Chanson. H. (2012). Momentum considerations in hydraulic jumps and bores. Journal of Irrigation and Drainage Engineering, ASCE, 138, 382–385. 10.1061/(ASCE)IR.1943-4774.0000409
  • Chanson, H., & Docherty, N. J. (2012). Turbulent velocity measurements in open channel bores. European Journal of Mechanics B/Fluids, 32, 52–58. 10.1016/j.euromechflu.2011.10.001
  • Chanson, H., Reungoat, D., Simon, B., & Lubin, P. (2011). High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore. Estuarine Coastal and Shelf Science, 95, 298–306. doi:10.1016/j.ecss.2011.09.012
  • Hinze, J. O. (1975). Turbulence (2nd ed.). New York: McGraw-Hill.
  • Hornung, H. G., Willert, C., & Turner, S. (1995). The flow field downstream of a hydraulic jump. Journal of Fluid Mechanics, 287, 299–316.
  • Khezri, N., & Chanson, H. (2012). Inception of bed load motion beneath a bore. Geomorphology, 153–154, 39–47. doi:10.1016/j.geomorph.2012.02.006
  • Koch, C., & Chanson, H. (2009). Turbulence measurements in positive surges and bores. Journal of Hydraulic Research, IAHR, 47(1), 29–40. doi:10.3826/jhr.2009.2954
  • Lewalle, J., & Ashpis, D. E. (2004). Estimation of time scales in unsteady flows in a turbomachinery rig. NASA/TM-2004-209452, 42 pages.
  • Liggett, J. A. (1994). Fluid Mechanics. New York: McGraw-Hill.
  • Mouazé, D., Chanson, H., & Simon, B. (2010). Field measurements in the tidal bore of the Sélune River in the Bay of Mont Saint Michel (September 2010). Hydraulic Model Report No. CH81/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 72 pages.
  • Murzyn, F., & Chanson, H. (2009). Free-surface fluctuations in hydraulic jumps: Experimental observations. Experimental Thermal and Fluid Science, 33, 1055–1064. doi:10.1016/j.expthermflusci.2009.06.003
  • Murzyn, F., Mouazé, D., & Chaplin, J. R. (2007). Air-water interface dynamic and free surface features in hydraulic jumps. Journal of Hydraulic Research, 45, 679–685.
  • Reungoat, D., Chanson, H., & Caplain, B. (2014). Sediment processes and flow reversal in the undular tidal bore of the Garonne River (France). Environmental Fluid Mechanics, 14, 591–616. http://dx.doi.org/10.1007/s10652-013-9319-y.
  • Richards, G. L., & Gavrilyuk, S. L. (2013). The classical hydraulic jump in a model of shear shallow-water flows. Journal of Fluid Mechanics, 725, 492–521. doi:10.1017/jfm.2013.174.
  • Simpson, J. H., Fisher, N. R., & Wiles, P. (2004). Reynolds stress and TKE production in an estuary with a tidal bore. Estuarine, Coastal and Shelf Science, 60, 619–627.
  • Tessier, B., Archer, A. W., Lanier, W. P., & Feldman, H. R. (1995). Comparison of ancient tidal rhythmites (Carbonifereous of Kansas and Indiana, USA) with modern analogues (the Bay of Mont-Saint-Michel, France). Special Publication - International Association of Sedimentologists, 24, 259–271.
  • Tricker, R. A. R. (1965). Bores, Breakers, Waves and Wakes. New York: American Elsevier.
  • Valiani, A. (1997). Linear and angular momentum conservation in hydraulic jump. Journal of Hydraulic Research, 35, 323–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.