701
Views
43
CrossRef citations to date
0
Altmetric
Research papers

Changes to flow and turbulence caused by different concentrations of fish in a circular tank

, , , &
Pages 364-383 | Received 09 Jan 2014, Accepted 09 Mar 2015, Published online: 13 Jun 2015

References

  • Bluteau, C. E., Jones, N. L., & Ivey, G. N. (2011). Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnology and Oceanography: Methods, 9, 302–321. 10.4319/lom.2011.9.302 doi: 10.4319/lom.2011.9.302
  • Chacon-Torres, A., Ross, L. G., & Beveridge, M. C. M. (1988). The effects of fish behaviour on dye dispersion and water exchange in small net cages. Aquaculture, 73(1–4), 283–293. doi:10.1016/0044-8486(88)90062-2
  • Doron, P., Bertuccioli, L., Katz, J., & Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, 31, 2108–2134. doi: 10.1175/1520-0485(2001)031<2108:TCADEI>2.0.CO;2
  • Duarte, S., Reig, L., Masaló, I., Blanco, M., & Oca, J. (2011). Influence of tank geometry and flow pattern in fish distribution. Aquacultural Engineering, 44, 48–54. doi: 10.1016/j.aquaeng.2010.12.002
  • Farrell, A. P., Johansen, J. A., & Suarez, R. K. (1991). Effects of exercise training on cardiac performance and muscle enzymes in rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry, 9, 303–312. doi: 10.1007/BF02265151
  • Folkedal, O., Torgersen, T., Nilsson, J., & Oppedal, F. (2010). Habituation rate and capacity of Atlantic salmon (Salmo salar) parr to sudden transitions from darkness to light. Aquaculture, 307, 170–172. doi:10.1016/j.aquaeng.2010.12.002
  • Forsberg, O. I. (1994). Modelling oxygen consumption rates of post-smolt Alantic salmon in commercial-scale land-based farms. Aquaculture International, 2, 180–196. doi:10.1007/BF00231514
  • Gansel, L., Rackebrandt, S., Oppedal, F., & McClimans, T. A. (2014). Flow fields inside stocked fish cages and the near environment. Journal of Offshore Mechanics and Arctic Engineering, 136, doi:10.115/1.4027746
  • Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. 10.1061/(ASCE)0733-9429(2002)128:1(117) doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Grisdale-Helland, B., Takle, H., & Helland, S. J. (2013). Aerobic exercise increases the utilization efficiency of energy and protein for growth in Atlantic salmon post-smolts. Aquaculture, 406–407, 43–51. doi:10.1016/j.aquaculture.2013.05.002
  • Hanke, W., Brücker, C., & Bleckmann, H. (2000). The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. Journal of Experimental Biology, 203, 1193–1200.
  • Huntley, M. E., & Zhou, M. (2004). Influence of animals on turbulence in the sea. Marine Ecology Progress Series, 273, 65–79. doi:10.3354/meps273065
  • Jeong, H. M., Chung, S. H., Kim, S. H., Choi, S. C., & Bae, K. Y. (2004). Fluid flow characteristics in the aquaculture tank for a breeding fish. KSME International Journal, 18, 2265–2272. doi:10.1007/BF02990231
  • Jobling, M., Jørgensen, E. H., Arnesen, A. M., & Ringø, E. (1993). Feeding, growth and environmental requirements of Arctic charr: a review of aquaculture potential. Aquaculture International, 1, 20–46. doi:10.1007/BF00692662
  • Johansson, D., Juell, J.-E., Oppedal, F., Stiansen, J.-E., & Ruohonen, K. (2007). The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture, 265(1–4), 271–287. doi:10.1016/j.aquaculture.2006.12.047
  • Klebert, P., Lader, P., Gansel, L., & Oppedal, F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: A review. Ocean Engineering, 58, 260–274. doi:10.1007/BF00692662
  • Labatut, R. A., Ebeling, J. M., Bhaskaran, R., & Timmons, M. N. (2007). Hydrodynamics of a large-scale mixed-cell raceway (MCR): Experimental studies. Aquacultural Engineering, 37, 132–143. doi:10.1016/j.aquaeng.2007.04.001
  • Lorke, A., & Probst, W. N. (2010). In situ measurements of turbulence in fish shoals. Limnol. Oceanography, 55(1), 354–364. doi:10.4319/lo.2010.55.1.0354
  • Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. Biological Bulletin, 32, 461–466. doi:10.1007/s10525-005-0125-z
  • Masaló, I., Reig, L., & Oca, J. (2008). Study of fish swimming activity using acoustic Doppler velocimetry (ADV) techniques. Aquacultural Engineering, 38(1), 43–51. doi:10.1016/j.aquaeng.2007.04.001
  • Mudge, T. D., & Lueck, R. G. (1994). Digital signal processing to enhance oceanographic observations. Journal of Atmospheric and Oceanic Technology, 11, 825–836. doi:10.1175/1520-0426(1994)011<0825:DSPTEO>2.0.CO;2 doi: 10.1175/1520-0426(1994)011<0825:DSPTEO>2.0.CO;2
  • Müller, U. K., Van Den Heuvel, B. L. E., Stamhuis, E. J., & Videler, J. J. (1997). Fish foot prints: Morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus riso). Journal of Experimental Biology, 200, 2893–2906.
  • Nilsen, A., Bjøru, B., Vigen, J., Oppedal, F., & Høy, E. (2010). Evaluering av metoder for badebehandling mot lakselus i stormerd. In Veterinærinstituttes rapportserie 1–2010. Oslo, Norway: Veterinærinstituttet. p. 48.
  • Oca, J., & Masaló, I. (2007). Design criteria for rotating flow cells in rectangular aquaculture tanks. Aquacultural Engineering, 36(1), 36–44. 10.1016/j.aquaeng.2006.06.001 doi: 10.1016/j.aquaeng.2006.06.001
  • Oca, J., & Masaló, I. (2013). Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features. Aquacultural Engineering, 52, 65–72. doi: 10.1016/j.aquaeng.2012.09.002
  • Plew, D. R., Nikora, V. I., Larned, S. T., Sykes, J. R. E., & Cooper, G. G. (2007). Fish swimming speed variability at constant flow: Galaxias maculatus. New Zealand Journal of Marine and Freshwater Research, 41, 185–195. doi:10.1080/00288330709509907
  • Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press.
  • Rasmussen, M. R., Laursen, J., Craig, S. R., & McLean, E. (2005). Do fish enhance tank mixing? Aquaculture, 250(1–2), 162–174. doi:10.1080/00288330709509907
  • Rockland-Scientific. (2013). Micro-squid dissolved oxygen instrument user manual. Victoria, BC, Canada.
  • Saddoughi, S. G., & Veeravalli, S. V. (1994). Local isotrophy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 268, 333–372. doi:10.1017/S0022112094001370
  • Schultz, W. W., & Webb, P. W. (2002). Power requirements of swimming: do new methods resolve old questions? Integrative and Comparative Biology, 42, 1018–1025. doi:10.1093/icb/42.5.1018
  • Sreenivasan, K. R. (1995). On the universality of the Kolmogorov constant. Physics of Fluids, 7, 2778–2784. doi:10.1063/1.868656
  • Takle, H., & Castro, V. (2013). Molecular adaptive mechanisms in the cardiac muscle of exercised fish. In Swimming physiology of fish (pp. 257–274). Berlin, Heidelberg, Germany: Springer-Verlag.
  • Tang, J., & Wardle, C. S. (1992). Power output of two sizes of Atlantic salmon (Salmo salar) at their maximum sustained swimming speeds. Journal of Experimental Biology, 166, 33–46.
  • Timmons, M. B., Summerfelt, S. T., & Vinci, B. J. (1998). Review of circular tank technology and management. Aquacultural Engineering, 18(1), 51–69. 10.1016/S0144-8609(98)00023-5 doi: 10.1016/S0144-8609(98)00023-5
  • Viadero, R. C. J., Rumberg, A., Gray, D. D., Tierney, A. E., & Semmens, K. J. (2006). Acoustic Doppler velocimetry in aquaculture research: Raceway and quiescent zone hydrodynamics. Aquacultural Engineering, 34(1), 16–25. doi:10.1016/S0144-8609(98)00023-5
  • Voulgaris, G., & Trowbridge, J. H. (1998). Evaluation of the Acoustic Doppler Velocimeter (ADV) for turbulence measurements. Journal of Atmospheric and Oceanic Technology, 15(1), 272–289. doi:10.1175/1520-0426(1994)011<0825:DSPTEO>2.0.CO;2 doi: 10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2
  • Zhao, Y.-P., Bi, C.-W., Dong, G.-H., Gui, F.-K., Cui, Y., & Xu, T.-J. (2013). Numerical simulation of the flow field inside and around gravity cages. Aquacultural Engineering, 52, 1–13. doi:10.1016/j.aquaeng.2012.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.