510
Views
9
CrossRef citations to date
0
Altmetric
Research papers

Debris flow entrainment rates in non-uniform channels with convex and concave slopes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 156-167 | Received 10 Jul 2016, Accepted 26 Mar 2017, Published online: 07 Jun 2017

References

  • Barbolini, M., Biancardi, A., Cappabianca, F., Natale, L., & Pagliardi, M. (2005). Laboratory study of erosion processes in snow avalanches. Cold Regions Science and Technology, 43(1), 1–9. doi:org/10.1016/j.coldregions.2005.01.007 doi: 10.1016/j.coldregions.2005.01.007
  • Begueria, S., Van Asch, Th. W. J., Malet, J.-P., & Grondahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Sciences, 9(6), 1897–1909. doi:10.5194/nhess-9-1897-2009
  • Crosta, G. B., Imposimato, S., & Roddeman, D. (2009). Numerical modelling of entrainment/deposition in rock and debris-avalanches. Engineering Geology, 109(1–2), 135–145. doi:10.1016/j.enggeo.2008.10.004
  • Denlinger, R. P., & Iverson, R. M. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research: Solid Earth, 106(B1), 553–566. doi:10.1029/2000jb900330
  • Denlinger, R. P., & Iverson, R. M. (2004). Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research: Earth Surface, 109. doi:10.1029/2003jf000085
  • Egashira, S., Honda, N., & Itoh, T. (2001). Experimental study on the entrainment of bed material into debris flow. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 645–650. doi:10.1016/S1464-1917(01)00062-9
  • Fraccarollo, L., & Capart, H. (2002). Riemann wave description of erosional dam-break flows. Journal of Fluid Mechanics, 461. doi:10.1017/s0022112002008455
  • Fraccarollo, L., & Papa, M. (2000). Numerical simulation of real debris-flow events. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(9), 757–763.doi:10.1016/S1464-1909(00)00098-8
  • Gauer, P., & Issler, D. (2004). Possible erosion mechanisms in snow avalanches. Annals of Glaciology, 38(1), 384–392. doi:10.3189/172756404781815068
  • Gray, J. M. N. T., Wieland, M., & Hutter, K. (1999). Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 455(1985), 1841–1874. doi:10.1098/rspa.1999.0383
  • Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245–296. doi:10.1029/97RG00426
  • Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., & Griswold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2), 116–121. doi: 10.1038/ngeo1040
  • Khattak, G. A., Owen, L. A., Kamp, U., & Harp, E. L. (2010). Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology, 115, 102–108. doi:10.1016/j.geomorph.2009.09.035
  • King, J. (1996). Tsing Shan Debris Flow (Special project Report SPR 6/96, 133 pp.). Geotechnical Engineering Office, Hongkong Government.
  • Koi, T., Hotta, N., Ishigaki, I., Matuzaki, N., Uchiyama, Y., & Suzuki, M. (2008). Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan. Geomorphology, 101, 692–702. doi:10.1016/j.geomorph.2008.03.007
  • Laigle, D., & Coussot, P. (1997). Numerical modeling of mudflows. Journal of Hydraulic Engineering, 123(7), 617–623. doi:org/10.1061/(ASCE)0733-9429(1997)123:7(617) doi: 10.1061/(ASCE)0733-9429(1997)123:7(617)
  • Legros, F. (2002). The mobility of long-runout landslides. Engineering Geology, 63(3–4), 301–331. doi:PiiS0013-7952(01)00090-4 doi: 10.1016/S0013-7952(01)00090-4
  • Lin, C.-W., Liu, S.-H., Lee, S.-Y., & Liu, C.-C. (2006). Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Engineering Geology, 86, 87–101. doi:10.1016/S0013-7952(03)00125-X doi: 10.1016/j.enggeo.2006.02.010
  • Lin, G.-W., Chen, H., Chen, Y.-H., & Horng, M.-J. (2008). Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97, 32–41. doi: 10.1016/j.enggeo.2007.12.001
  • Luna, B. Q., Remaître, A., van Asch, Th. W. J., Malet, J.-P., & van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128, 63–75. doi: 10.1016/j.enggeo.2011.04.007
  • Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P., & Bristeau, M. O. (2007a). Numerical modeling of self-channeling granular flows and of their levee-channel deposits. Journal of Geophysical Research, 112(F2), 2050. doi:10.1029/2006JF000469
  • Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., & Lucas, A. (2010). Erosion and mobility in granular collapse over sloping beds. Journal of Geophysical Research-Earth Surface, 115, 011304. doi:ArtnF0304010.1029/2009jf001462 doi: 10.1029/2009JF001462
  • Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S., & Bouchut, F. (2007b). Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophysical Research Letters, 34(22), 641. doi: 10.1029/2007GL031348
  • McDougall, S., & Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6), 1084–1097. doi:10.1139/t04-052
  • McDougall, S., & Hungr, O. (2005). Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5), 1437–1448. doi:10.1139/t05-064
  • Medina, V., Hurlimann, M., & Bateman, A. (2008). Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1), 127–142. doi:10.1007/s10346-007-0102-3
  • Pirulli, M., Bristea, M.-O., Mangeney, A., & Scavia, C. (2007). The effect of the earth pressure coefficients on the runout of granular material. Environmental Modelling & Software, 22(10), 1437–1454. doi:10.1016/j.envsoft.2006.06.006
  • Pudasaini, S. P., & Hutter, K. (2007). Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches. Berlin: Springer.
  • Rickenmann, D., & Koch, T. (1997). Comparison of debris flow modeling approaches. In C. Chen (Ed.), Proceedings of 1st International Conference on debris-flow hazards mitigation (pp. 576–585). New York, NY: ASCE.
  • Rickenmann, D., Weber, D., & Stepanov, B. (2003). Erosion by debris flows in field and laboratory experiments. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, 1 and 2, 883–894.
  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215. doi:10.1017/S0022112089000340 doi: 10.1017/S0022112089000340
  • Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. (2013). Analysing debris-flow impact models, based on a small scale modelling approach. Surveys in Geophysics, 34(1), 121–140. doi:10.1007/s10712-012-9199-6
  • Scheidl, C., McArdell, B. W., & Rickenmann, D. (2015). Debris-flow velocities and superelevation in a curved laboratory channel. Canadian Geotechnical Journal, NRC Research Press, 2015(52), 1–13. doi:10.1139/cgj-2014-0081
  • Schraml, K., Thomschitz, B., McArdell, B. W., Graf, C., & Kaitna, R. (2015). Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences Discussions, 3(3), 1397–1425. doi:10.5194/nhessd-3-1397-2015
  • Schürch, P., Densmore, A. L., Rosser, N. J., & McArdell, B. W. (2011). Dynamic controls on erosion and deposition on debris-flow fans. Geology, 39(9), 827–830. doi: 10.1130/G32103.1
  • Sovilla, B., Burlando, P., & Bartelt, P. (2006). Field experiments and numerical modeling of mass entrainment in snow avalanches. Journal of Geophysical Research: Earth Surface, 111(F3). doi:10.1029/2005jf000391
  • Takahashi, T. (1978). Mechanical characteristics of debris flow. Journal of the Hydraulics Division-Asce, 104(8), 1153–1169.
  • Tang, C., Rengers, N., Van Asch, Th. W. J., Yang, Y. H., & Wang, G. F. (2011). Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwestern China. Natural Hazards and Earth System Science, 11(11), 2903–2912. doi:10.5194/nhess-11-2903-2011
  • Tang, C., van Asch, T. W. J., Chang, M., Chen, G. Q., Zhao, X. H., & Huang, X. C. (2012). Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology, 139-140, 559–576. doi:10.1016/j.geomorph.2011.12.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.