492
Views
12
CrossRef citations to date
0
Altmetric
Research paper

Wavelet spectral analysis of the free surface of turbulent flows

ORCID Icon &
Pages 211-226 | Received 21 Jul 2017, Accepted 04 Mar 2018, Published online: 27 Jul 2018

References

  • Borue, V., Orszag, S. A., & Staroselsky, I. (1995). Interaction of surface waves with turbulence: Direct numerical simulations of turbulent open-channel flow. Journal of Fluid Mechanics, 286, 1–23. doi: 10.1017/S0022112095000620
  • Brocchini, M., & Peregrine, D. H. (2001). The dynamics of strong turbulence at free surfaces. Part 1. Description. Journal of Fluid Mechanics, 449, 225–254. doi: 10.1017/S0022112001006012
  • Burns, J. C. (1953). Long waves in running water. Mathematical Proceedings of the Cambridge Philosophical Society, 49(4), 695–706. doi: 10.1017/S0305004100028899
  • Chiapponi, L., Longo, S., & Tonelli, M. (2012). Experimental study on oscillating grid turbulence and free surface fluctuation. Experiments in Fluids, 53(5), 1515–1531. doi: 10.1007/s00348-012-1367-4
  • Cobelli, P. J., Maurel, A., Pagneux, V., & Petitjeans, P. (2009). Global measurement of water waves by Fourier transform profilometry. Experiments in Fluids, 46(6), 1037–1047. doi: 10.1007/s00348-009-0611-z
  • Dolcetti, G., Horoshenkov, K. V., Krynkin, A., & Tait, S. J. (2016). Frequency-wavenumber spectrum of the free surface of shallow turbulent flows over a rough boundary. Physics of Fluids, 28(10), 105105 doi: 10.1063/1.4964926
  • Dolcetti, G., & Krynkin, A. (2017). Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows. The Journal of the Acoustical Society of America, 142(5), 3122–3134. doi: 10.1121/1.5011183
  • Dolcetti, G., Krynkin, A., & Horoshenkov, K. V. (2017). Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow. The Journal of the Acoustical Society of America, 142(6), 3387–3401. doi: 10.1121/1.5015990
  • Donelan, M. A., Drennan, W. M., & Magnusson, A. K. (1996). Nonstationary analysis of the directional properties of propagating waves. Journal of Physical Oceanography, 26(9), 1901–1914. doi: 10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2
  • Drivas, T. D., & Wunsch, S. (2016). Triad resonance between gravity and vorticity waves in vertical shear. Ocean Modelling, 103, 87–97. doi: 10.1016/j.ocemod.2015.10.002
  • Fenton, J. D. (1973). Some results for surface gravity waves on shear flows. IMA Journal of Applied Mathematics, 12(1), 1–20. doi: 10.1093/imamat/12.1.1
  • Fujita, I., Furutani, Y., & Okanishi, T. (2011). Advection features of water surface profile in turbulent open-channel flow with hemisphere roughness elements. Visualization of Mechanical Processes: An International Online Journal, 1(4). doi: 10.1615/VisMechProc.v1.i3.70
  • Grossmann, A., & Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723–736. doi: 10.1137/0515056
  • Guo, X., & Shen, L. (2010). Interaction of a deformable free surface with statistically steady homogeneous turbulence. Journal of Fluid Mechanics, 658, 33–62. doi: 10.1017/S0022112010001539
  • Harband, J. (1976). Three dimensional flow over a submerged object. Journal of Engineering Mathematics, 10(1), 1–21. doi: 10.1007/BF01535423
  • Hedges, T. S., & Lee, B. W. (1992). The equivalent uniform current in wave-current computations. Coastal Engineering, 16(3), 301–311. doi: 10.1016/0378-3839(92)90046-W
  • Herbert, E., Mordant, N., & Falcon, E. (2010). Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid. Physical Review Letters, 105(14), 144502 doi: 10.1103/PhysRevLett.105.144502
  • Horoshenkov, K. V., Nichols, A., Tait, S. J., & Maximov, G. A. (2013). The pattern of surface waves in a shallow free surface flow. Journal of Geophysical Research: Earth Surface, 118(3), 1864–1876.
  • Krogstad, H. E. (2005). The directional wave spectrum. In D. Hauser, K. K. Kahma, H. E. Krogstad, S. Lehner, J. Monbaliu, & L. R. Wyatt (Eds.), COST action 714, measuring and analysing the directional spectra of ocean waves. Luxembourg: Office for Official Publications of the European Communities.
  • Krynkin, A., Horoshenkov, K. V., & Van Renterghem, T. (2016). An airborne acoustic method to reconstruct a dynamically rough flow surface. The Journal of the Acoustical Society of America, 140(3), 2064–2073. doi: 10.1121/1.4962559
  • Lacaze, L., Paci, A., Cid, E., Cazin, S., Eiff, O., Esler, J. G., & Johnson, E. R. (2013). Wave patterns generated by an axisymmetric obstacle in a two-layer flow. Experiments in Fluids, 54(12), 1618. doi: 10.1007/s00348-013-1618-z
  • Legleiter, C. J., Mobley, C. D., & Overstreet, B. T. (2017). A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows. Journal of Geophysical Research: Earth Surface, 122(9), 1715–1741.
  • Longo, S. (2010). Experiments on turbulence beneath a free surface in a stationary field generated by a Crump weir: Free-surface characteristics and the relevant scales. Experiments in Fluids, 49(6), 1325–1338. doi: 10.1007/s00348-010-0881-5
  • Longo, S. (2011). Experiments on turbulence beneath a free surface in a stationary field generated by a Crump weir: Turbulence structure and correlation with the free surface. Experiments in Fluids, 50(1), 201–215. doi: 10.1007/s00348-010-0921-1
  • Longo, S. (2012). Wind-generated water waves in a wind tunnel: Free surface statistics, wind friction and mean air flow properties. Coastal Engineering, 61, 27–41. doi: 10.1016/j.coastaleng.2011.11.008
  • Longo, S., Chiapponi, L., & Liang, D. (2013). Analytical study of the water surface fluctuations induced by grid-stirred turbulence. Applied Mathematical Modelling, 37(12-13), 7206–7222. doi: 10.1016/j.apm.2013.02.005
  • Mardia, K. V., & Jupp, P. E. (2000). Directional statistics. New York, NY: Wiley.
  • Massel, S. R. (2001). Wavelet analysis for processing of ocean surface wave records. Ocean Engineering, 28(8), 957–987. doi: 10.1016/S0029-8018(00)00044-5
  • Meyers, S. D., Kelly, B. G., & O'Brien, J. J. (1993). An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Monthly Weather Review, 121(10), 2858–2866. doi: 10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2
  • Milan, D. J., Heritage, G. L., Large, A. R. G., & Entwistle, N. S. (2010). Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surface Processes and Landforms, 35(8), 918–931. doi: 10.1002/esp.1948
  • Nichols, A., Tait, S., Horoshenkov, K., & Shepherd, S. (2013). A non-invasive airborne wave monitor. Flow Measurement and Instrumentation, 34, 118–126. doi: 10.1016/j.flowmeasinst.2013.09.006
  • Nichols, A., Tait, S. J., Horoshenkov, K. V., & Shepherd, S. J. (2016). A model of the free surface dynamics of shallow turbulent flows. Journal of Hydraulic Research, 54(5), 516–526. doi: 10.1080/00221686.2016.1176607
  • Phillips, O. M. (1960). On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. Journal of Fluid Mechanics, 9(2), 193–217. doi: 10.1017/S0022112060001043
  • Savelsberg, R., & Van De Water, W. (2009). Experiments on free-surface turbulence. Journal of Fluid Mechanics, 619, 95–125. doi: 10.1017/S0022112008004369
  • Shrira, V. I. (1993). Surface waves on shear currents: Solution of the boundary-value problem. Journal of Fluid Mechanics, 252, 565–584. doi: 10.1017/S002211209300388X
  • Tamburrino, A., & Martínez, N. (2017). Wave and wind effects on the oxygen transfer across an air-water interface: An experimental study. The Canadian Journal of Chemical Engineering, 95(8), 1594–1604. doi: 10.1002/cjce.22807
  • Teixeira, M. A. C., & Belcher, S. E. (2006). On the initiation of surface waves by turbulent shear flow. Dynamics of Atmospheres and Oceans, 41(1), 1–27. doi: 10.1016/j.dynatmoce.2005.10.001
  • Teixeira, M. A. C., Paci, A., & Belleudy, A. (2017). Drag produced by waves trapped at a density interface in non-hydrostatic flow over an axisymmetric hill. Journal of the Atmospheric Sciences, 74, 1839–1857. doi: 10.1175/JAS-D-16-0199.1
  • Thorpe, S. A. (1966). On wave interactions in a stratified fluid. Journal of Fluid Mechanics, 24(4), 737–751. doi: 10.1017/S002211206600096X
  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1), 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  • Turney, D. E., & Banerjee, S. (2013). Air–water gas transfer and near-surface motions. Journal of Fluid Mechanics, 733, 588–624. doi: 10.1017/jfm.2013.435
  • Wang, H., Felder, S., & Chanson, H. (2014). An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Experiments in Fluids, 55(7), 1775 doi: 10.1007/s00348-014-1775-8
  • Wang, H., Murzyn, F., & Chanson, H. (2015). Interaction between free-surface, two-phase flow and total pressure in hydraulic jump. Experimental Thermal and Fluid Science, 64, 30–41. doi: 10.1016/j.expthermflusci.2015.02.003
  • Zakharov, V. E., & Shrira, V. I. (1990). Formation of the angular spectrum of wind waves. Journal of Experimental and Theoretical Physics, 71, 1091–1100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.