434
Views
7
CrossRef citations to date
0
Altmetric
Research paper

Reduced-order model with radial basis function network for leak detection

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 426-438 | Received 14 Jul 2017, Accepted 19 Jun 2018, Published online: 26 Oct 2018

References

  • Brevis, W., & García-Villalba, M. (2011). Shallow-flow visualization analysis by proper orthogonal decomposition. Journal of Hydraulic Research, 49(5), 586–594. doi: 10.1080/00221686.2011.585012
  • Broomhead, D. S., & Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). Malvern: Royal Signals and Radar Establishment Malvern (United Kingdom).
  • Brunone, B., & Berni, A. (2010). Wall shear stress in transient turbulent pipe flow by local velocity measurement. Journal of Hydraulic Engineering, 136(10), 716–726. doi: 10.1061/(ASCE)HY.1943-7900.0000234
  • Cazemier, W., Verstappen, R. W. C. P., & Veldman, A. E. P. (1998). Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids, 10(7), 1685–1699. doi: 10.1063/1.869686
  • Chaudhry, M. H. (1979). Applied hydraulic transients. New York, NY: Van Nostrand Reinhold.
  • Covas, D., & Ramos, H. (2001, March). Hydraulic transients used for leakage detection in water distribution systems. In Proc 4th Intl Conf Water Pipeline Systems (pp. 227–241). York, UK.
  • Covas, D., & Ramos, H. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, 136(2), 248–257. doi: 10.1061/(ASCE)0733-9496(2010)136:2(248)
  • Evangelista, S., Leopardi, A., Pignatelli, R., & de Marinis, G. (2015). Hydraulic transients in viscoelastic branched pipelines. Journal of Hydraulic Engineering, 141(8), 04015016. doi: 10.1061/(ASCE)HY.1943-7900.0001030
  • Gong, J., Lambert, M. F., Zecchin, A. C., & Simpson, A. R. (2016). Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal. Journal of Hydraulic Research, 54(2), 210–219. doi: 10.1080/00221686.2015.1116115
  • Haghighi, A., Covas, D., & Ramos, H. (2012). Direct backward transient analysis for leak detection in pressurized pipelines: from theory to real application. Journal of Water Supply: Research and Technology-Aqua, 61(3), 189–200. doi: 10.2166/aqua.2012.032
  • Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76(8), 1905–1915. doi: 10.1029/JB076i008p01905
  • Huang, Y. C., Lin, C. C., & Yeh, H. D. (2015). An optimization approach to leak detection in pipe networks using simulated annealing. Water Resources Management, 29(11), 4185–4201. doi: 10.1007/s11269-015-1053-4
  • Huang, G. B., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 16(1), 57–67. doi: 10.1109/TNN.2004.836241
  • Ito, K., & Ravindran, S. S. (1998). A reduced basis method for control problems governed by PDEs. In: Desch W, Kappel F, Kunisch K, editors. Control and estimation of distributed parameter systems. Basel: Birkhäuser; p. 153–168.
  • Jönsson, L., & Larson, M. (1992). Leak detection through hydraulic transient analysis. In Coulbeck B, Evans EP, editors. Pipeline Systems. Dordrecht: Springer, p.–273–286.
  • Jung, B. S., & Karney, B. W. (2008). Systematic exploration of pipeline network calibration using transients. Journal of Hydraulic Research, 46(sup1), 129–137. doi: 10.1080/00221686.2008.9521947
  • Kapelan, Z. S., Savic, D. A., & Walters, G. A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. Journal of Hydraulic Research, 41(5), 481–492. doi: 10.1080/00221680309499993
  • Kim, B., Lee, Y., & Choi, D. H. (2009). Construction of the radial basis function based on a sequential sampling approach using cross-validation. Journal of Mechanical Science and Technology, 23(12), 3357–3365. doi: 10.1007/s12206-009-1014-z
  • Lee, P. J., Lambert, M. F., Simpson, A. R., Vítkovský, J. P., & Liggett, J. (2006). Experimental verification of the frequency response method for pipeline leak detection. Journal of Hydraulic Research, 44(5), 693–707. doi: 10.1080/00221686.2006.9521718
  • Liggett, J. A., & Chen, L. C. (1994). Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, 120(8), 934–955. doi: 10.1061/(ASCE)0733-9429(1994)120:8(934)
  • Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge (MA): MIT press.
  • Ostrowski, Z., Białecki, R. A., & Kassab, A. J. (2005). Estimation of constant thermal conductivity by use of proper orthogonal decomposition. Computational Mechanics, 37(1), 52–59. doi: 10.1007/s00466-005-0697-y
  • Park, K. H., Jun, S. O., Baek, S. M., Cho, M. H., Yee, K. J., & Lee, D. H. (2013). Reduced-order model with an artificial neural network for aerostructural design optimization. Journal of Aircraft, 50(4), 1106–1116. doi: 10.2514/1.C032062
  • Pudar, R. S., & Liggett, J. A. (1992). Leaks in pipe networks. Journal of Hydraulic Engineering, 118(7), 1031–1046. doi: 10.1061/(ASCE)0733-9429(1992)118:7(1031)
  • Ramos, H., & Covas, D. (2006). Water pipe system response under dynamic effects. Journal of Water Supply: Research and Technology—AQUA, 55(4), 269–282. doi: 10.2166/aqua.2006.0011
  • Ravindran, S. S. (1999). Proper orthogonal decomposition in optimal control of fluids.
  • Sattar, A. M. (2016). A probabilistic projection of the transient flow equations with random system parameters and internal boundary conditions. Journal of Hydraulic Research, 54(3), 342–359. doi: 10.1080/00221686.2016.1140682
  • Sattar, A. M., & Chaudhry, M. H. (2008). Leak detection in pipelines by frequency response method. Journal of Hydraulic Research, 46(sup1), 138–151. doi: 10.1080/00221686.2008.9521948
  • Sattar, A. M., Chaudhry, M. H., & Kassem, A. A. (2008). Partial blockage detection in pipelines by frequency response method. Journal of Hydraulic Engineering, 134(1), 76–89. doi: 10.1061/(ASCE)0733-9429(2008)134:1(76)
  • Shamloo, H., & Haghighi, A. (2009). Leak detection in pipelines by inverse backward transient analysis. Journal of Hydraulic Research, 47(3), 311–318. doi: 10.1080/00221686.2009.9522002
  • Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of Applied Mathematics, 45(3), 561–571. doi: 10.1090/qam/910462
  • Soares, A. K., Covas, D. I., & Reis, L. F. R. (2011). Leak detection by inverse transient analysis in an experimental PVC pipe system. Journal of Hydroinformatics, 13(2), 153–166. doi: 10.2166/hydro.2010.012
  • Taherdangkoo, M., Paziresh, M., Yazdi, M., & Bagheri, M. (2013). An efficient algorithm for function optimization: Modified stem cells algorithm. Open Engineering, 3(1), 36–50. doi: 10.2478/s13531-012-0047-8
  • Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection. Journal of Water Resources Planning and Management, 133(6), 519–530. doi: 10.1061/(ASCE)0733-9496(2007)133:6(519)
  • Vítkovský, J. P., Simpson, A. R., & Lambert, M. F. (2000). Leak detection and calibration using transients and genetic algorithms. Journal of Water Resources Planning and Management, 126(4), 262–265. doi: 10.1061/(ASCE)0733-9496(2000)126:4(262)
  • Wang, X. J., Lambert, M. F., Simpson, A. R., Liggett, J. A., & Vtkovský, J. P. (2002). Leak detection in pipelines using the damping of fluid transients. Journal of Hydraulic Engineering, 128(7), 697–711. doi: 10.1061/(ASCE)0733-9429(2002)128:7(697)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.