408
Views
12
CrossRef citations to date
0
Altmetric
Research paper

An improved model for the tangential velocity distribution in strong free-surface vortices: an experimental and theoretical study

, , &
Pages 547-560 | Received 07 Dec 2016, Accepted 07 Jul 2018, Published online: 22 Oct 2018

References

  • Ackers, P., & Crump, E. S. (1960). The vortex drop. ICE Proceedings, 16(4), 433–442.
  • Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. doi: 10.1146/annurev.fl.23.010191.001401
  • Adrian, R. J., & Westerweel, J. (2011). Particle image velocimetry (No. 30). Cambridge: Cambridge University Press.
  • Anwar, H. (1965). Flow in a free vortex. Water Power, 4, 153–161.
  • Anwar, H. O., & Amimilett, M. B. (1980). Vortices at vertically inverted intake. Journal of Hydraulic Research, 18(2), 123–134. doi: 10.1080/00221688009499556
  • Anwar, H. O., Weller, J. A., & Amphlett, M. B. (1978). Similarity of free-vortex at horizontal intake. Journal of Hydraulic Research, 16(2), 95–105. doi: 10.1080/00221687809499623
  • Brombach, H. (1982). Flow control for the outlets from stormwater retention basins. Wasserwirtschaft, 72(2), 44–52.
  • Buckingham, E. (1915). The principle of similitude. Nature, 96, 396–397. doi: 10.1038/096396d0
  • Chen, Y.-l., Wu, C., Ye, M., & Ju, X.-m. (2007). Hydraulic characteristics of vertical vortex at hydraulic intakes. Journal of Hydrodynamics, Ser. B, 19(2), 143–149. doi: 10.1016/S1001-6058(07)60040-7
  • Conway, A. (1971). Guide to fluidics. London: Macdonald.
  • Daggett, L. L., & Keulegan, G. H. (1974). Similitude conditions in free-surface vortex formations. Journal of the Hydraulics Division, 100(11), 1565–1581.
  • Dhakal, S., Timilsina, A. B., Dhakal, R., Fuyal, D., Bajracharya, T. R., Pandit, H. P., … Nakarmi, A. M. (2015). Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant. Renewable and Sustainable Energy Reviews, 48, 662–669. doi: 10.1016/j.rser.2015.04.030
  • Drioli, C. (1947). Su un particolare tipo di imbocco per pozzi di scarico (scaricatore idraulico a vortice). L’Energia Elettrica, 24(10), 447–452.
  • Einstein, H. A., & Li, H. (1951). Steady vortex flow in a real fluid. In Proceedings of heat transfer and fluid mechanics institute (pp. 33–43). Stanford, CA: Stanford University.
  • Gordon, J. (1970). Vortices at intakes. Water Power, 22(4), 137–138.
  • Hall, M. G. (1966). The structure of concentrated vortex cores. Progress in Aerospace Sciences, 7, 53–110. doi: 10.1016/0376-0421(66)90006-6
  • Hite, J. E., Jr., & Mih, W. C. (1994). Velocity of air-core vortices at hydraulic intakes. Journal of Hydraulic Engineering, 120(3), 284–297. doi: 10.1061/(ASCE)0733-9429(1994)120:3(284)
  • Jain, A. K., Garde, R. J., & Ranga Raju, K. G. (1978). Vortex formation at vertical pipe intakes. Journal of the Hydraulics Division, 104(10), 1429–1445.
  • Klimenko, A. (1998). Evolution of vorticity in the bathtub vortex. In Proceedings of the13th Australasian fluid mechanics conference (p. 18). Monash University, Melbourne Australia.
  • Knauss, J. E. (1987). Swirling flow problems at intakes. Leiden: CRC Press/Balkema.
  • Levi, E. (1983). A fluidic vortex device for water treatment processes. Journal of Hydraulic Research, 21(1), 17–31. doi: 10.1080/00221688309499447
  • Li, H.-f., Chen, H.-x., Ma, Z., & Yi, Z. (2008). Experimental and numerical investigation of free surface vortex. Journal of Hydrodynamics. Ser. B, 20(4), 485–491. doi: 10.1016/S1001-6058(08)60084-0
  • Lugt, H. J. (1983). Vortex flow in nature and technology. New York, NY: Wiley-Interscience. 1983, 305 p. Translation., 1.
  • Mih, W. (1990). Analysis of fine particle concentrations in a combined vortex: GH Vatistas. Vol 27, No. 3, 1989, pp. 417–427.
  • Möller, G. (2013). Vortex-induced air entrainment rate at intakes (Diss.). Eidgenössische Technische Hochschule ETH Zürich, Nr. 21277, 2013.
  • Mulligan, S. (2015). Experimental and numerical analysis of three-dimensional free-surface turbulent vortex flows with strong circulation (PhD dissertation). IT Sligo.
  • Mulligan, S., Casserly, J., & Sherlock, R. (2016). Effects of geometry on strong free-surface vortices in subcritical approach flows. Journal of Hydraulic Engineering, 142(11), 04016051. doi: 10.1061/(ASCE)HY.1943-7900.0001194
  • Odgaard, A. J. (1986). Free-surface air core vortex. Journal of Hydraulic Engineering, 112(7), 610–620. doi: 10.1061/(ASCE)0733-9429(1986)112:7(610)
  • Posey, C., & Hsu, H. (1950). How the vortex affects orifice discharge. Engineering News, 144, p. 30.
  • Quick, M. C. (1961). A study of the free spiral vortex. Bristol: University of Bristol.
  • Rankine, W. J. M. (1872). A manual of applied mechanics. Glasgow: Charles Griffin and Company.
  • Rosenhead, L. (1930). The spread of vorticity in the wake behind a cylinder. In Proceedings of the royal society of London. Series A, containing papers of a mathematical and physical character, London (Vol. 127(806), pp. 590–612).
  • Rott, N. (1958). On the viscous core of a line vortex. ZAMP Zeitschrift für Angewandte Mathematik und Physik, 9(5-6), 543–553. doi: 10.1007/BF02424773
  • Rouse, H. (1943). On the role of eddies in fluid motion: DTIC Document.
  • Scully, M. (1975). Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. Massachusetts: Massachusetts Institute of Technology.
  • Stevens, J. C., & Kolf, R. C. (1959). Vortex flow through horizontal orifices. Transactions of the American Society of Civil Engineers, 124(1), 871–883.
  • Suerich-Gulick, F., Gaskin, S. J., Villeneuve, M., & Parkinson, É. (2013). Characteristics of free surface vortices at low-head hydropower intakes. Journal of Hydraulic Engineering, 140(3), 291–299. doi: 10.1061/(ASCE)HY.1943-7900.0000826
  • Sun, H., & Liu, Y. (2015). Theoretical and experimental study on the vortex at hydraulic intakes. Journal of Hydraulics Research, 53(6), 787–796. doi: 10.1080/00221686.2015.1076533
  • Taştan, K., & Yildirim, N. (2010). Effects of dimensionless parameters on air-entraining vortices. Journal of Hydraulics Research, 48(1), 57–64. doi: 10.1080/00221680903566018
  • Vatistas, G. H., Lin, S., & Kwok, C. K. (1986). Theoretical and experimental studies on vortex chamber flows. AIAA Journal, 24(4), 635–642. doi: 10.2514/3.9319
  • Vatistas, G. H., Kozel, V., & Mih, W. C. (1991). A simpler model for concentrated vortices. Experiments in Fluids, 11(1), 73–76. doi: 10.1007/BF00198434
  • Wang, Y.-k., Jiang, C.-b., & Liang, D.-f. (2010). Investigation of air-core vortex at hydraulic intakes. Journal of Hydrodynamics, Ser. B, 22(5), 696–701. doi: 10.1016/S1001-6058(10)60017-0
  • Zielinski, P. B., & Villemonte, J. R. (1968). The effect of viscosity on vortex-orifice flow. Journal of the Hydraulics Division, ASCE, 94(HY3), 745–752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.