284
Views
1
CrossRef citations to date
0
Altmetric
Research papers

Phase and amplitude based characterization of small viscoelastic pipes in the frequency domain with a reservoir–pipeline–oscillating-valve system

, , &
Pages 460-470 | Received 17 May 2018, Accepted 28 Mar 2019, Published online: 08 Aug 2019

References

  • Chaudhry, M. H. (2014). Applied hydraulic transients (3rd ed.). New York, NY: Springer.
  • Covas, D., Stoianov, I., Mano, J. F., Ramos, H., Graham, N., & Maksimovic, C. (2005). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II – model development, calibration and verification. Journal of Hydraulic Research, 43(1), 56–70. doi: 10.1080/00221680509500111
  • Duan, H.-F., Lee, P. J., Ghidaoui, M. S., & Tung, Y.-K. (2012). System response function-based leak detection in viscoelastic pipelines. Journal of Hydraulic Engineering, 138(2), 143–153. doi: 10.1061/(ASCE)HY.1943-7900.0000495
  • Ferrante, M., & Capponi, C. (2017). Calibration of viscoelastic parameters by means of transients in a branched water pipeline system. Urban Water Journal, 15(1), 9–15. doi: 10.1080/1573062X.2017.1363254
  • Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). New York, NY: Wiley.
  • Franke, P.-G. (1983). Computation of unsteady pipe flow with respect to visco-elastic material properties. Journal of Hydraulic Research, 21(5), 345–353. doi: 10.1080/00221688309499456
  • Gally, M., Güney, M., & Rieutord, E. (1979). An investigation of pressure transients in viscoelastic pipes. Journal of Fluids Engineering, 101(4), 495–499. doi: 10.1115/1.3449017
  • Gong, J., Lambert, M. F., Zecchin, A. C., & Simpson, A. R. (2016). Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal. Journal of Hydraulic Research, 54(2), 210–219. doi: 10.1080/00221686.2015.1116115
  • Gong, J., Zecchin, A. C., Lambert, M. F., & Simpson, A. R. (2015). Study on the frequency response function of viscoelastic pipelines using a multi-element Ke[l]vin–Voigt model. Procedia Engineering, 119, 226–234. doi: 10.1016/j.proeng.2015.08.880
  • Gong, J., Zecchin, A. C., Lambert, M. F., & Simpson, A. R. (2016). Determination of the creep function of viscoelastic pipelines using system resonant frequencies with hydraulic transient analysis. Journal of Hydraulic Engineering, 142(9), 04016023. doi: 10.1061/(ASCE)HY.1943-7900.0001149
  • Hadj-Taïeb, L., & Hadj-Taïeb, E. (2009). Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation. International Journal of Modelling and Simulation, 29(2), 206–213. doi: 10.1080/02286203.2009.11442526
  • Hirschmann, P. (1979). Mitteilungen, Heft Nr.29: Resonanz in visko-elastischen Druckleitungen [Announcements, Issue no. 29: Resonance in viscoelastic pipelines]. München: Prof. Dr.-Ing. P.-G. Franke.
  • Kagawa, T., Lee, I., Kitagawa, A., & Takenaka, T. (1983). High speed and accurate computing method of frequency dependent friction in laminar pipe flow for characteristics method. Transactions of the Japan Society of Mechanical Engineers Series B, 49(447), 2638–2644. doi: 10.1299/kikaib.49.2638
  • Keramat, A., & Haghighi, A. (2014). Straightforward transient-based approach for the creep function determination in viscoelastic pipes. Journal of Hydraulic Engineering, 140(12), 04014058. doi: 10.1061/(ASCE)HY.1943-7900.0000929
  • Keramat, A., Kolahi, A. G., & Ahmadi, A. (2013). Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio. Journal of Fluids and Structures, 43, 164–178. doi: 10.1016/j.jfluidstructs.2013.08.013
  • Keramat, A., Tijsseling, A. S., & Ahmadi, A. (2010). Investigation of transient cavitating flow in viscoelastic pipes. IOP Conference Series: Earth and Environmental Science, 12, 012081.
  • Keramat, A., Tijsseling, A. S., Hou, Q., & Ahmadi, A. (2012). Fluid-structure interaction with pipe-wall viscoelasticity during water hammer. Journal of Fluids and Structures, 28, 434–455. doi: 10.1016/j.jfluidstructs.2011.11.001
  • Lee, P. J. (2013). Energy analysis for the illustration of inaccuracies in the linear modelling of pipe fluid transients. Journal of Hydraulic Research, 51(2), 133–144. doi: 10.1080/00221686.2012.734861
  • Lee, P. J., Duan, H.-F., Ghidaoui, M., & Karney, B. (2013). Frequency domain analysis of pipe fluid transient behaviour. Journal of Hydraulic Research, 51(6), 609–622. doi: 10.1080/00221686.2013.814597
  • Lee, P. J., Lambert, M. F., Simpson, A. R., Vítkovský, J. P., & Liggett, J. (2006). Experimental verification of the frequency response method for pipeline leak detection. Journal of Hydraulic Research, 44(5), 693–707. doi: 10.1080/00221686.2006.9521718
  • Lee, P. J., & Vítkovský, J. P. (2010). Quantifying linearization error when modeling fluid pipeline transients using the frequency response method. Journal of Hydraulic Engineering, 136(10), 831–836. doi: 10.1061/(ASCE)HY.1943-7900.0000246
  • Lee, P. J., Vítkovský, J. P., Lambert, M. F., & Simpson, A. R. (2008). Valve design for extracting response functions from hydraulic systems using pseudorandom binary signals. Journal of Hydraulic Engineering, 134(6), 858–864. doi: 10.1061/(ASCE)0733-9429(2008)134:6(858)
  • Lee, P. J., Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2005). Frequency domain analysis for detecting pipeline leaks. Journal of Hydraulic Engineering, 131(7), 596–604. doi: 10.1061/(ASCE)0733-9429(2005)131:7(596)
  • Limmer, J., & Meißner, E. (1974). Mitteilungen, Heft Nr.14: Druckwellen in viskoelastischen Leitungen [Announcements, Issue no. 14: Pressure waves in viscoelastic pipelines]. München: Prof. Dr.-Ing. P.-G. Franke.
  • Meißner, E. (1976). Mitteilungen, Heft Nr.19: Berechnung instationärer Strömungsvorgänge in Kunststoffleitungen [Announcements, Issue no. 19: Calculation of the unsteady flow behaviour in polymer pipelines]. München: Prof. Dr.-Ing. P.-G. Franke.
  • Rieutord, E., & Blanchard, A. (1979). Pulsating viscoelastic pipe flow – water-hammer. Journal of Hydraulic Research, 17(3), 217–229. doi: 10.1080/00221687909499585
  • Seyler, E. (1981). Mitteilungen, Heft Nr.35: Berechnung instationärer Strömungsvorgänge in viskoelastischen Rohrleitungen mit Berücksichtigung von Reibungseinflüssen [Announcements, Issue no. 35: Calculation of the unsteady flow behaviour in viscoelastic pipelines taking fluid friction into account]. München: Prof. Dr.-Ing. P.-G. Franke.
  • Soares, A. K., Covas, D. I. C., & Carriço, N. J. G. (2012). Transient vaporous cavitation in viscoelastic pipes. Journal of Hydraulic Research, 50(2), 228–235. doi: 10.1080/00221686.2012.669143
  • Soares, A. K., Covas, D. I., & Reis, L. F. (2008). Analysis of PVC pipe-wall viscoelasticity during water hammer. Journal of Hydraulic Engineering, 134(9), 1389–1394. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1389)
  • Suo, L., & Wylie, E. B. (1990a). Complex wavespeed and hydraulic transients in viscoelastic pipes. Journal of Fluids Engineering, 112(4), 496–500. doi: 10.1115/1.2909434
  • Suo, L., & Wylie, E. B. (1990b). Hydraulic transients in rock-bored tunnels. Journal of Hydraulic Engineering, 116(2), 196–210. doi: 10.1061/(ASCE)0733-9429(1990)116:2(196)
  • Svingen, B. (1996a). Fluid structure interaction in piping systems (Unpublished doctoral dissertation). The Norwegian University of Science and Technology, Trondheim.
  • Svingen, B. (1996b). Fluid structure interaction in slender pipes. In A. Boldy (Ed.), Proceedings of the 7th international conference on pressure surges and fluid transients in pipelines and open channels (pp. 385–396). London: Mechanical Engineering Publications.
  • Tijsseling, A. S., Hou, Q., Svingen, B., & Bergant, A. (2010). Acoustic resonance in a reservoir-pipeline-orifice system. In Proceedings of the ASME pressure vessels and piping conference 2010 (Vol. 4, pp. 1–12). New York, NY: ASME.
  • Tijsseling, A. S., Hou, Q., Svingen, B., & Bergant, A. (2013). Acoustic resonance experiments in a reservoir-pipeline-orifice system. In Proceedings of the ASME pressure vessels and piping conference 2013 (Vol. 4, pp. 1–8). New York, NY: ASME.
  • Trikha, A. K. (1975). An efficient method for simulating frequency-dependent friction in transient liquid flow. Journal of Fluids Engineering, 97(1), 97–105. doi: 10.1115/1.3447224
  • Urbanowicz, K., & Zarzycki, Z. (2012). New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow. Journal of Theoretical and Applied Mechanics, 50(2), 487–508.
  • Vardy, A. E., & Brown, J. M. B. (1995). Transient, turbulent, smooth pipe friction. Journal of Hydraulic Research, 33(4), 435–456. doi: 10.1080/00221689509498654
  • Vardy, A. E., & Brown, J. M. B. (2003). Transient turbulent friction in smooth pipe flows. Journal of Sound and Vibration, 259(5), 1011–1036. doi: 10.1006/jsvi.2002.5160
  • Vítkovský, J. P., Lambert, M. F., Simpson, A. R., & Bergant, A. (2003). Frequency-domain transient pipe flow solution including unsteady friction. In E. Cabrera and E. Cabrera Jr. (Eds.), Pumps, electromechanical devices and systems applied to urban water management (pp. 773–780). Lisse: A.A. Balkema.
  • Wylie, E. B., Streeter, V. L., & Suo, L. (1993). Fluid transients in systems. Upper Saddle River, NJ: Pearson.
  • Zarzycki, Z. (2000). On weighting function for wall shear stress during unsteady turbulent flow. In A. Anderson (Ed.), Proceedings of the 8th international conference on pressure surges. Bury St. Edmunds: Professional Engineering Publishing.
  • Zielke, W. (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 90(1), 109–115. doi: 10.1115/1.3605049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.