595
Views
18
CrossRef citations to date
0
Altmetric
Research papers

Turbulence statistics of flow causing scour around circular and oblong piers

, ORCID Icon &
Pages 673-686 | Received 07 Oct 2018, Accepted 23 Jul 2019, Published online: 04 Nov 2019

References

  • Ali, K. H. M., & Karim, O. (2002). Simulation of flow around piers. Journal of Hydraulic Research, 40(2), 161–174. doi: 10.1080/00221680209499859
  • Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162–171.
  • Ataie-Ashtiani, B., & Aslani-Kordkandi, A. (2012). Flow field around side-by-side piers with and without a scour hole. European Journal of Mechanics B/Fluids, 36, 152–166. doi: 10.1016/j.euromechflu.2012.03.007
  • Ataie-Ashtiani, B., & Aslani-Kordkandi, A. (2013). Flow field around single and tandem piers. Flow, Turbulence and Combustion, 90, 471–490. doi: 10.1007/s10494-012-9427-7
  • Breusers, H. N. C., Nicollet, G., & Shen, H. W. (1977). Local scour around cylindrical piers. Journal of Hydraulic Research, 15(3), 211–252. doi: 10.1080/00221687709499645
  • Chavan, R., Venkataramana, B, Acharya, P., & Kumar, B. (2018). Comparison of scour and flow characteristics around circular and oblong bridge piers in seepage affected alluvial channels. Journal of Marine Science and Application, 17, 254–264. https://doi.org/10.1007/s11804-018-0016-6
  • Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids, 8, 1–12. doi: 10.1007/BF00203058
  • Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic Doppler Velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Graf, W. H., & Istiarto, I. (2002). Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13–20. doi: 10.1080/00221680209499869
  • Izadinia, E., Heidarpour, M., & Schleiss, A. J. (2013). Investigation of turbulence flow and sediment entrainment around a bridge pier. Stochastic Environmental Research and Risk Assessment, 27, 1303–1314. doi: 10.1007/s00477-012-0666-x
  • Keshavarzi, A., Melville, B., & Ball, J. (2014). Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier. Environmental Fluid Mechanics, 14(4), 821–847. doi: 10.1007/s10652-013-9332-1
  • Keshavarzi, A., Shrestha, C. K., Melville, B., Khabbaz, H., Ranjbar-Zahedani, M., & Ball, J. (2018). Estimation of maximum scour depths at upstream of front and rear piers for two in-line circular columns. Environmental Fluid Mechanics, 18(2), 537–550. doi: 10.1007/s10652-017-9572-6
  • Keshavarzi, A., Shrestha, C. K., Zahedani, M. R., Ball, J., & Khabbaz, H. (2017). Experimental study of flow structure around two in-line bridge piers. Proceedings of the Institution of Civil Engineers-Water Management, 171, 311–327. doi: 10.1680/jwama.16.00104
  • Kothyari, U. C., Garde, R. C. J., & Ranga Raju, K. G. (1992). Temporal variation of scour around circular bridge piers. Journal of Hydraulic Engineering, 118(8), 1091–1106. doi: 10.1061/(ASCE)0733-9429(1992)118:8(1091)
  • Long, D., Steffler, P. M., & Rajaratnam, N. (1990). LDA study of flow structure in submerged hydraulic jump. Journal of Hydraulic Research, 28(4), 437–460. doi: 10.1080/00221689009499059
  • Lu, S. S., & Willmarth, W. W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics, 60, 481–511. doi: 10.1017/S0022112073000315
  • Maity, H., & Mazumder, B. S. (2014). Experimental investigation of the impacts of coherent flow structures upon turbulence properties in regions of crescentic scour. Earth Surface Processes and Landforms, 39, 995–1013. doi: 10.1002/esp.3496
  • Maity, H., & Mazumder, B. S. (2017). Prediction of plane-wise turbulent events to the Reynolds stress in a flow over scour-bed. Environmetrics, 28(4), e2442. doi: 10.1002/env.2442
  • Melville, B. W., & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research, 15(4), 373–380. doi: 10.1080/00221687709499641
  • Nakagawa, H., & Nezu, I. (1977). Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. Journal of Fluid Mechanics, 80(1), 99–128. doi: 10.1017/S0022112077001554
  • Nezu, I., & Rodi, W. (1986). Open-channel measurement with a laser Doppler anemometer. Journal of Hydraulic Engineering, ASCE, 112(5), 335–355. doi: 10.1061/(ASCE)0733-9429(1986)112:5(335)
  • Ojha, S. P., & Mazumder, B. S. (2008). Turbulence characteristics of flow region over a series of 2-D dune shaped structures. Advances in Water Resources, 31, 561–576. doi: 10.1016/j.advwatres.2007.12.001
  • Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.
  • Sarkar, K., Chakraborty, C., & Mazumder, B. S. (2016). Variations of bed elevations due to turbulence around submerged cylinder in sand beds. Environmental Fluid Mechanics, 16, 659–693. doi: 10.1007/s10652-016-9449-0
  • Sarkar, K., & Mazumder, B. S. (2014). Turbulent flow over the trough region formed by a pair of forward-facing bedform shapes. European Journal of Mechanics B/Fluids, 46, 126–143. doi: 10.1016/j.euromechflu.2014.02.013
  • Schlichting, H., & Gersten, K. (2000). Boundary-layer theory. Berlin: Springer-Verlag.
  • Sterk, G., Jacobs, A. F., & Van Boxel, J. H. (1998). The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surface Processes and Landforms, 23, 877–887. doi:10.1002/(SICI)1096-9837(199810)23 doi: 10.1002/(SICI)1096-9837(199810)23:10<877::AID-ESP905>3.0.CO;2-R
  • Tachie, M. F., Balachandar, R., & Bergstrom, D. J. (2004). Roughness effects on turbulent plane wall jets in an open channel. Experiments in Fluids, 37, 281–292. doi: 10.1007/s00348-004-0816-0
  • Venditti, J. G., & Bennett, S. J. (2000). Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. Journal of Geophysical Research: Oceans, 105, 22035–22047. doi: 10.1029/2000JC900094
  • Vijayasree, B. A., & Eldho, T. I. (2016). Experimental study of scour around bridge piers of different arrangements with same aspect ratio. Scour and erosion. In Proceedings of the 8th International Conference on Scour and Erosion (pp. 889–895). ICSE, 2016.
  • Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. doi: 10.1080/15715124.2017.1394315
  • Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Viswanadham, B. V. S. (2018). Effectiveness of combinations of raft foundation with aprons as a protection measure against bridge pier scour. Sādhanā, 43, 21. https://doi.org/10.1007/s12046-018-0784-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.