1,673
Views
1
CrossRef citations to date
0
Altmetric
Research papers

Existence and properties of the logarithmic layer in oscillating flows

, ORCID Icon, , &
Pages 687-700 | Received 25 Oct 2018, Accepted 23 Jul 2019, Published online: 01 Nov 2019

References

  • Afzal, N., & Yajnik, K. (1973). Analysis of turbulent pipe and channel flows at moderately large Reynolds number. Journal of Fluid Mechanics, 61(1), 23–31. doi: 10.1017/S0022112073000546
  • Akhavan, R., Kamm, R. D., & Shapiro, A. H. (1991). An investigation of transition to turbulence in bounded oscillatory Stokes flows part 1. experiments. Journal of Fluid Mechanics, 225, 395–422. doi: 10.1017/S0022112091002100
  • Andreas, E. L., Claffey, K. J., Jordan, R. E., Fairall, C. W., Guest, P. S., Persson, P. O. G., & Grachev, A. A. (2006). Evaluations of the von Kármán constant in the atmospheric surface layer. Journal of Fluid Mechanics, 559, 117–149. doi: 10.1017/S0022112006000164
  • Armenio, V., & Piomelli, U. (2000). A lagrangian mixed subgrid-scale model in generalized coordinates. Flow, Turbulence and Combustion, 65(1), 51–81. doi: 10.1023/A:1009998919233
  • Bernardini, M., Pirozzoli, S., & Orlandi, P. (2014). Velocity statistics in turbulent channel flow up to Reτ=4000. Journal of Fluid Mechanics, 742, 171–191. doi: 10.1017/jfm.2013.674
  • Costamagna, P., Vittori, G., & Blondeaux, P. (2003). Coherent structures in oscillatory boundary layers. Journal of Fluid Mechanics, 474, 1–33. doi: 10.1017/S0022112002002665
  • Frenzen, P., & Vogel, C. A. (1995). On the magnitude and apparent range of variation of the von Kármán constant in the atmospheric surface layer. Boundary-Layer Meteorology, 72(4), 371–392. doi: 10.1007/BF00709000
  • Gross, T. F., & Nowell, A. R. M. (1983). Mean flow and turbulence scaling in a tidal boundary layer. Continental Shelf Research, 2(2-3), 109–126. doi: 10.1016/0278-4343(83)90011-0
  • Hino, M., Kashiwayanagi, M., Nakayama, A., & Hara, T. (1983). Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. Journal of Fluid Mechanics, 131, 363–400. doi: 10.1017/S0022112083001378
  • Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi: 10.1063/1.2162185
  • Hsu, C. T., Lu, X., & Kwan, M. K. (2000). LES and RANS studies of oscillating flows over flat plate. Journal of Engineering Mechanics, 126(2), 186–193. doi: 10.1061/(ASCE)0733-9399(2000)126:2(186)
  • Jensen, B. L., Sumer, B. M., & Fredsøe, J. (1989). Turbulent oscillatory boundary layers at high Reynolds numbers. Journal of Fluid Mechanics, 206, 265–297. doi: 10.1017/S0022112089002302
  • Jiménez, J., & Moin, P. (1991). The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 225, 213–240. doi: 10.1017/S0022112091002033
  • Jiménez, J., & Moser, R. D. (2007). What are we learning from simulating wall turbulence? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1852), 715–732. doi: 10.1098/rsta.2006.1943
  • Jonsson, I. G. (1980). A new approach to oscillatory rough turbulent boundary layers. Ocean Engineering, 7(1), 109–152. doi: 10.1016/0029-8018(80)90034-7
  • Jonsson, I. G., & Carlsen, N. A. (1976). Experimental and theoretical investigations in an oscillatory turbulent boundary layer. Journal of Hydraulic Research, 14(1), 45–60. doi: 10.1080/00221687609499687
  • Kaptein, S. J., Duran-Matute, M., Roman, F., Armenio, V., & Clercx, H. J. H. (2019). Effect of the water depth on oscillatory flows over a flat plate: from the intermittent towards the fully turbulent regime. Environmental Fluid Mechanics, 1–18. doi:10.1007/s10652-019-09671-3
  • Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166. doi: 10.1017/S0022112087000892
  • Kundu, P. K., & Cohen, I. M. (2002). Fluid mechanics (2nd ed.). San Diego: Elsevier.
  • Li, M., Sanford, L., & Chao, S. Y. (2005). Effects of time dependence in unstratified tidal boundary layers: results from large eddy simulations. Estuarine, Coastal and Shelf Science, 62(1-2), 193–204. doi: 10.1016/j.ecss.2004.08.017
  • Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J., & Sreenivasan, K. R. (2010). Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Physics of Fluids, 22(6), 065103. doi: 10.1063/1.3453711
  • Marusic, I., Monty, J. P., Hultmark, M., & Smits, A. J. (2013). On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 716, R3. doi: 10.1017/jfm.2012.511
  • Mckeon, B. J., Li, J., Jiang, W., Morrison, J. F., & Smits, A. J. (2004). Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 501, 135–147. doi: 10.1017/S0022112003007304
  • Mujal-Colilles, A., Christensen, K. T., Bateman, A., & Garcia, M. H. (2016). Coherent structures in oscillatory flows within the laminar-to-turbulent transition regime for smooth and rough walls. Journal of Hydraulic Research, 54(5), 502–515. doi: 10.1080/00221686.2016.1174960
  • Nagib, H. M., & Chauhan, K. A. (2008). Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 20(10), 101518. doi: 10.1063/1.3006423
  • Nieuwstadt, F. T., Boersma, B. J., & Westerweel, J. (2016). Turbulence-introduction to theory and applications of turbulent flows. Switzerland: Springer.
  • Pedocchi, F., Cantero, M. I., & García, M. H. (2011). Turbulent kinetic energy balance of an oscillatory boundary layer in the transition to the fully turbulent regime. Journal of Turbulence, 12, N32. doi: 10.1080/14685248.2011.587427
  • Perry, A. E., & Li, J. D. (1990). Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 218, 405–438. doi: 10.1017/S0022112090001057
  • Piomelli, U., & Balaras, E. (2002). Wall-layer models for large eddy simulations. Annual Review of Fluid Mechanics, 34, 349–374. doi: 10.1146/annurev.fluid.34.082901.144919
  • Pirozzoli, S., Bernardini, M., & Orlandi, P. (2014). Turbulence statistics in Couette flow at high Reynolds number. Journal of Fluid Mechanics, 758, 327–343. doi: 10.1017/jfm.2014.529
  • Radhakrishnan, S., & Piomelli, U. (2008). Large-eddy simulation of oscillating boundary layers: Model comparison and validation. Journal of Geophysical Research: Oceans, 113, C02022. doi: 10.1029/2007JC004518
  • Ramaprian, B. R., & Tu, S. W. (1983). Fully developed periodic turbulent pipe flow. part 2. the detailed structure of the flow. Journal of Fluid Mechanics, 137, 59–81. doi: 10.1017/S0022112083002293
  • Salon, S., Armenio, V., & Crise, A. (2007). A numerical investigation of the Stokes boundary layer in the turbulent regime. Journal of Fluid Mechanics, 570, 253–296. doi: 10.1017/S0022112006003053
  • Salon, S., Armenio, V., & Crise, A. (2009). A numerical (LES) investigation of a shallow-water, mid-latitude, tidally-driven boundary layer. Environmental Fluid Mechanics, 9, 525–547. doi: 10.1007/s10652-009-9122-y
  • Scandura, P., Faraci, C., & Foti, E. (2016). A numerical investigation of acceleration-skewed oscillatory flows. Journal of Fluid Mechanics, 808, 576–613. doi: 10.1017/jfm.2016.641
  • Scotti, A., & Piomelli, U. (2001). Numerical simulation of pulsating turbulent channel flow. Physics of Fluids, 13, 1367–1384. doi: 10.1063/1.1359766
  • Skote, M. (2014). Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. International Journal of Heat and Fluid Flow, 50, 352–358. doi: 10.1016/j.ijheatfluidflow.2014.09.006
  • Sleath, J. F. A. (1987). Turbulent oscillatory flow over rough beds. Journal of Fluid Mechanics, 182, 369–409. doi: 10.1017/S0022112087002374
  • Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. Cambridge: MIT Press.
  • Townsend, A. A. (1961). Equilibrium layers and wall turbulence. Journal of Fluid Mechanics, 11(1), 97–120. doi: 10.1017/S0022112061000883
  • Tuzi, R., & Blondeaux, P. (2008). Intermittent turbulence in a pulsating pipe flow. Journal of Fluid Mechanics, 599, 51–79. doi: 10.1017/S0022112007009354
  • Vittori, G., & Verzicco, R. (1998). Direct simulation of transition in an oscillatory boundary layer. Journal of Fluid Mechanics, 371, 207–232. doi: 10.1017/S002211209800216X
  • Zang, Y., Street, R. L., & Koseff, J. R. (1994). A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. Journal of Computational physics, 114, 18–33. doi: 10.1006/jcph.1994.1146