559
Views
4
CrossRef citations to date
0
Altmetric
Research papers

Efficient numerical representation of the impacts of flexible plant reconfiguration on canopy posture and hydrodynamic drag

, &
Pages 755-766 | Received 02 Jul 2018, Accepted 16 Sep 2019, Published online: 29 Nov 2019

References

  • Albertson, J., & Parlange, M. (1999). Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain. Journal of Water Recourses Research, 35, 2121–2132. doi: 10.1029/1999WR900094
  • Barbier, E., Hacker, S., Kennedy, C., Koch, E., Stier, A., & Silliman, B. (2011). The value of estuarine and coastal ecosystem services. Journal of Ecological Monographs, 81(2), 169–193. doi: 10.1890/10-1510.1
  • Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Journal of Physics of Fluids, 17, 025105. doi: 10.1063/1.1839152
  • Burke, R., & Stolzenbach, K. (1983). Free surface flow through salt marsh grass. MITSG 83-16 Technical Report. Cambridge, MA: MIT.
  • Calaf, M., Parlange, M., & Meneveau, C. (2011). Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Journal of Physics of Fluids, 23, 126603. doi: 10.1063/1.3663376
  • Chamecki, M., Meneveau, C., & Parlange, M. (2009). Large eddy simulation of pollen transport in the atmospheric boundary layer. Journal of Aerosol Science, 40, 241–255. doi: 10.1016/j.jaerosci.2008.11.004
  • Choi, S. U., & Kang, H. (2016). Characteristics of mean flow and turbulence statistics of depth-limited flows with submerged vegetation in a rectangular open-channel. Journal of Hydraulic Research, 54(5), 527–540. doi: 10.1080/00221686.2016.1168882
  • Dupont, S., Gosselin, F., Py, C., De Langre, E., Hemon, P., & Brunet, Y. (2010). Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. Journal of Fluid Mechanics, 652, 5–44. doi: 10.1017/S0022112010000686
  • Finnigan, J. (1979). Turbulence in waving wheat, I, Mean statistics and honami. Journal of Boundary Layer Meteorology, 16, 181–211.
  • Finnigan, J. (2000). Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32, 519–571. doi: 10.1146/annurev.fluid.32.1.519
  • Gerken, T., Chamecki, M., & Fuentes, J. D. (2017). Air-parcel residence times within forest canopies. Journal of Boundary-Layer Meteorology, 165, 29–54. doi: 10.1007/s10546-017-0269-7
  • Ghisalberti, M., & Nepf, H. M. (2004). The limited growth of vegetated shear layers. Water Resources Research, 40, W07502. doi:10.1029/2003WR002776
  • Ghisalberti, M., & Nepf, H. (2002). Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research, 107(C2), 3011. doi: 10.1029/2001JC000871
  • Ghisalberti, M., & Nepf, H. (2006). The structure of the shear layer in flows over rigid and flexible canopies. Journal of Environmental Fluid Mechanics, 6, 277–301. doi: 10.1007/s10652-006-0002-4
  • Huthoff, F., Augustijn, D. C. M., & Hulscher, S. J. M. H. (2007). Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Journal of Water Resour. Research, 43(6), W06413. doi: 10.1029/2006WR005625
  • Ikeda, S., Yamada, T., & Toda, Y. (2001). Numerical study on turbulent flow and honami in and above flexible plant canopy. International Journal of Heat and Fluid Flow, 22(3), 252–258. doi: 10.1016/S0142-727X(01)00087-X
  • Katul, G., Poggi, D., & Ridolfi, L. (2011). A flow resistance model for assessing the impact of vegetation on flood routing mechanics. Journal of Water Resource Research, 47, W08533.
  • Kennedy, H., Beggins, J., Duarte, C., Fourqurean, J., Holmer, M., Marba, N., & Middelburg, J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Journal of Global Biogeochemical Cycles, 24, GB4026.
  • King, A., Tinoco, R., & Cowen, E. (2012). A k–ε turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. Journal of Fluid Mechanics, 701, 1–39. doi: 10.1017/jfm.2012.113
  • Kumar, V., Kleissl, J., Parlange, M., & Meneveau, C. (2006). A large-eddy simulation of a diurnal cycle of the turbulent atmospheric boundary layer: Atmospheric stability and scaling issues. Journal of Water Resource Research, 42, W06D09.
  • Li, C., & Xie, J. (2011). Numerical modeling of free surface flow over submerged and highly flexible vegetation. Journal of Advances in Water Resources, 34(4), 468–477. doi: 10.1016/j.advwatres.2011.01.002
  • Lien, F., Yee, E., & Wilson, J. (2005). Numerical modelling of the turbulent flow developing within and over a 3-d building array, part ii: a mathematical foundation for a distributed drag force approach. Journal of Boundary-Layer Meteorology, 114(2), 245–285. doi: 10.1007/s10546-004-9242-3
  • Luhar, M., & Nepf, H. (2011). Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography., 56(6), 2003–2017. doi: 10.4319/lo.2011.56.6.2003
  • Luhar, M., & Nepf, H. (2013). From the blade scale to the reach scale: a characterization of aquatic vegetative drag. Advances in Water Resources, 51, 305–316. doi: 10.1016/j.advwatres.2012.02.002
  • Marjoribanks, T., Hardy, R., Lane, S., & Parsons, D. (2014). High-resolution numerical modelling of flow—vegetation interactions. Journal of Hydraulic Research, 52(6), 775–793. doi: 10.1080/00221686.2014.948502
  • Mattis, S., Dawson, C., Kees, C., & Farthing, M. (2015). An immersed structure approach for fluid-vegetation interaction. Journal of Advances in Water Resources, 80, 1–16. doi: 10.1016/j.advwatres.2015.02.014
  • Nepf, H. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechics, 44, 123–142. doi: 10.1146/annurev-fluid-120710-101048
  • Nezu, I., & Sanjou, M. (2008). Turburence structure and coherent motion in vegetated canopy open-channel flows. Journal of Hydro Environment Research, 2, 62–90. doi: 10.1016/j.jher.2008.05.003
  • Nikora, N., Nikora, V., & Donoghue, T. (2013). Velocity Profiles in Vegetated Open-Channel Flows: Combined Effects of Multiple Mechanisms. Journal of Hydraulic Engineering, 139(10), 1021–1032. doi: 10.1061/(ASCE)HY.1943-7900.0000779
  • Pan, Y., Chamecki, M., & Isard, S. (2014). Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. Journal of Fluid Mechanics, 753, 499–534. doi: 10.1017/jfm.2014.379
  • Pan, Y., Follett, E., Chamecki, M., & Nepf, H. (2014). Strong and weak, unsteady reconfiguration and its impact on turbulence structure within plant canopies. Journal of Physics of Fluids, 26, 105102. doi: 10.1063/1.4898395
  • Raupach, M., Finnigan, J., & Brunet, Y. (1996). Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology, 78, 351–382. doi: 10.1007/BF00120941
  • Shaw, R., & Schumann, U. (1992). Large-eddy simulation of turbulent flow above and within a forest. Journal of Boundary-Layer Meteorology, 61, 47–64. doi: 10.1007/BF02033994
  • Shaw, R., & Seginer, I. (1987). Calculation of velocity skewness in real and artificial plant canopies. Journal of Boundary-Layer Meteorology, 39(3), 15–332.
  • Vogel, S. (1984). Drag and flexibility in sessile organisms. Journal of American Zoologist, 24, 37–44. doi: 10.1093/icb/24.1.37
  • Vogel, S. (1989). Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany, 40, 941–948. doi: 10.1093/jxb/40.8.941
  • Waycott, M., Duarte, T., Carruthers, R., Orth, W., Dennison, S., Olyarnik, A., … Williams, S. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106, 12377–12381. doi: 10.1073/pnas.0905620106
  • Yan, C., Nepf, H., Huang, W., & Cui, G. (2017). Large eddy simulation of flow and scalar transport in a vegetated channel. Journal of Environmental Fluid Mechanics, 17, 497–519. doi: 10.1007/s10652-016-9503-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.