268
Views
3
CrossRef citations to date
0
Altmetric
Research paper

Computational simulation of round thermal jets in an ambient cross flow using a large-scale hydrodynamic model

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 920-937 | Received 04 Dec 2018, Accepted 21 Oct 2019, Published online: 10 Dec 2019

References

  • Abraham, G. (1963). Jet diffusion in stagnant ambient fluid. Delft Hydraulics Lab., Publ. No. 29.
  • Abramovich, G. (1963). The theory of turbulent jets. Cambridge: MIT Press.
  • Andreopoulos, J., & Rodi, W. (1984). Experimental investigation of jets in a crossflow. Journal of Fluid Mechanics, 138, 93–127.
  • Arunajatesan, S. (2012). Evaluation of two-equation RANS models for simulation of jet-in-crossflow problems. Paper presented at the fiftieth AIAA aerospace sciences meeting, Nashville.
  • Ben Meftah, M., De Serio, F., Malcangio, D., & Mossa, M. (2014, September). Vegetation effects on vertical jet structures. In A. J. Schleiss, G. de Cesare, M. J. Franca, & M. Pfister (Eds.), CRC Press. Proceedings of river flow 2014 (pp. 581–588). Lausanne, CH: EPFL.
  • Ben Meftah, M., De Serio, F., Malcangio, D., Mossa, M., & Petrillo, A. F. (2015). Experimental study of a vertical jet in a vegetated crossflow. Journal of Environmental Management, 164, 19–31.
  • Ben Meftah, M., Malcangio, D., De Serio, F., & Mossa, M. (2018). Vertical dense jet in flowing current. Environmental Fluid Mechanics, 18(1), 75–96.
  • Blumberger, A. F., Ji, Z.-G., & Ziegler, C. K. (1996). Modeling outfall plume behavior using far field circulation model. Journal of Hydraulic Engineering, 122(11), 610–616.
  • Cavar, D., & Meyer, K. E. (2012). LES of turbulent jet in cross-flow: Part 1 – A numerical validation study. International Journal of Heat and Fluid Flow, 36, 18–34.
  • Chochua, G., Shyy, W., Thakur, S., Brankovic, A., Lienau, J., Porter, L., & Lischinsky, D. A. (2000). Computational and experimental investigation of turbulent jet and crossflow interaction. Numerical Heat Transfer, Part A: Applications, 38, 557–572.
  • Chorin, A. J. A. (1967). A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2, 12–26.
  • Chu, V. H., & Goldberg, M. B. (1974). Buoyant forced-plumes in cross flow. Journal of Hydraulic Division, 100(HY9), 1203–1214.
  • Cuthbertson, A. J. S., & Davies, P. A. (2008). Deposition from particle-laden, round, turbulent, horizontal, buoyant jets in stationarfy and coflowing receiving fluids. Journal of Hydraulic Engineering, 134(4), 390–402.
  • de Wit, L., van Rhee, C., & Keetels, G. (2014). Turbulent interaction of a buoyant jet with cross-flow. Journal of Hydraulic Engineering, 140(12), 1–14.
  • DHI Software. (2009). MIKE 3. Estuarine and coastal hydraulics and oceanography. User guide. Hørsholm: DHI Headquarters.
  • Doneker, R. L., & Jirka, G. H. (2007). CORMIX user manual: A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters (EPA-823-K-07-001).
  • Fan, L. N. (1967). Turbulent buoyant jets into stratified or flowing ambient fluids (Report No. KH-R-15). Pasadena, CA: W. M. Keck Laboratory of Hydrology and Water Resources, California Institute of Technology.
  • Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. New York: Academic Press.
  • Frisch, U. (1995). Turbulence: The legacy of A.N. Kolmogorov. Cambridge: Cambridge University Press.
  • Gao, M., Huai, W., Xiao, Y., Yang, Z., & Ji, B. (2018). Large eddy simulation of a vertical buoyant jet in a vegetated channel. International Journal of Heat and Fluid Flow, 70, 114–124.
  • Gohil, T. B., Saha, A. K., & Muralidhar, K. (2011). Direct numerical simulation of naturally evolving free circular jet. Journal of Fluids Engineering, 133(11), 111203.
  • Guan, H., & Wu, C. (2007). Large-eddy simulations and vortex structures of turbulent jets in crossflow. Science in China Series G: Physics, Mechanics & Astronomy, 50(1), 118–132.
  • Holdeman, J. D., & Srinivasan, R. (1984). On modelling dilution jet flow fields (NASA TM-83708). Cleveland, OH.
  • Hwang, R.-R., Chiang, T.-P., & Yang, W.-C. (1995). Effect of ambient stratification on buoyant jets in crossflow. Journal of Engineering Mechanics, 121, 865–872.
  • Jirka, G. H. (2001). Large scale flow structures and mixing processes in shallow flows. Journal of Hydraulic Engineering, 39(6), 567–573.
  • Jirka, G. H. (2004). Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: single round jet. Environmental Fluid Mechanics, 4(1), 1–56.
  • Jirka, G. H. (2006). Integral model for turbulent buoyant jets in unbounded stratified flows Part 2: Plane jet dynamics resulting from multiport diffuser jets. Environmental Fluid Mechanics, 6(1), 43–100.
  • Jones, W. P., & McGuirk, J. J. (1980). Computation of a round turbulent jet discharging into a confined crossflow. In L. Bradbury (Ed.), Proceedings of turbulent shear flow II (pp. 233–245). Berlin, DE: Springer Verlag.
  • Kamotani, Y., & Greber, I. (1972). Experiments on a turbulent jet in a cross flow. AIAA Journal, 10, 1425–1429.
  • Lee, J. H. W., & Neville-Jones, P. (1987). Initial dilution of horizontal jet in crossflow. Journal of Hydraulic Engineering, 113(5), 1651–1675.
  • Lee, J. H.-W., & Vincent, C. (2003). Turbulent jets and plumes. A Lagrangian approach. Boston: Springer.
  • Lee, J. W., Teubner, M. D., Nixon, J. B., & Gill, P. M. (2006). Applications of the artificial compressibility method for turbulent open channel flows. International Journal for Numerical Methods in Fluids, 51, 617–633.
  • Lessin, G., & Raudsepp, U. (2006). Water quality assessment using integrated modeling and monitoring in Narva Bay, Gulf of Finland. Environmental Modeling & Assessment, 11(4), 315–332.
  • List, E. J. (1982). Turbulent jets and plumes. Annual Review of Fluid Mechanics, 14, 189–212.
  • Lumborg, U. (2005). Modelling the deposition, erosion, and flux of cohesive sediment through Oresund. Journal of Marine Systems, 56(1), 179–193.
  • Ma, F., Satish, M., & Islam, M. R. (2007). Large eddy simulation of thermal jets in cross flow. Engineering Applications of Computational Fluid Mechanics, 1(1), 25–35.
  • Malcangio, D., Ben Meftah, M., & Mossa, M. (2016). Physical modelling of buoyant effluents discharged into a cross flow. Paper presented at the IEEE workshop on environmental, energy, and structural monitoring systems, Bari, IT.
  • Malcangio, D., Melena, A., Damiani, L., Mali, M., & Saponieri, A. (2017). Numerical study of water quality improvement in a port through a forced mixing system. WIT Transactions on Ecology and the Environment, 1, 69–80.
  • Malcangio, D., & Mossa, M. (2016). A laboratory investigation into the influence of a rigid vegetation on the evolution of a round turbulent jet discharged within a cross flow. Journal of Environmental Management, 173, 105–120.
  • Malcangio, D., Mossa, M., Petrillo, A. F., & Semeraro, A. M. (2008). Experimental study of the impact of rigid vegetation on a buoyant jet in presence of crossflows. In M. Altinakar, M. Kokpinar, Y. Darama, B. Yegen, & N. Harmancioglu (Eds.), KUBABA congress department and travel service. Proceedings of river flow 2008 (pp. 875–882). Çeşme: KUBABA Congress Department and Travel Service.
  • Malcangio, D., & Petrillo, A. F. (2010). Modeling of brine outfall at the planning stage of desalination plants. Desalination, 254, 114–125.
  • Mali, M., Malcangio, D., Dell’Anna, M. M., Damiani, L., & Mastrorilli, P. (2018). Influence of hydrodynamic features in the transport and fate of hazard contaminants within touristic ports. Case study: Torre a Mare (Italy). Heliyon, 4(1), e00494.
  • Meneveau, C. (1993). Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Physics of Fluids, 6(2), 815–833.
  • Meyer, K., Pedersen, J., & Özcan, O. (2007). A turbulent jet in crossflow analysed with proper orthogonal decomposition. Journal of Fluid Mechanics, 583, 199–227.
  • Moore, D. J. (1966). Physical aspects of plume models. Air &Water Pollution, 10, 411–417.
  • Muppidi, S., & Mahesh, K. (2007). Direct numerical simulation of round turbulent jets in crossflow. Journal of Fluid Mechanics, 574, 59–84.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282–290.
  • New, T. H., Lim, T. T., & Luo, S. C. (2006). Effects of jet velocity profiles on a round jet in cross-flow. Experiments in Fluids, 40, 859–875.
  • Noutsopoulos, G., & Yannopoulos, P. (1987). The round vertical turbulent buoyant jet. Journal of Hydraulic Research, 25(4), 481–502.
  • Patrick, M. A. (1967). Experimental investigation of the mixing and penetration of a round turbulent jet injected perpendicularly into a transverse stream. Transactions of the Institute of Chemical Engineers, 45, 16–31.
  • Pietrzak, J., Jakobson, J. B., Burchard, H., Jacob Vested, H., & Petersen, O. (2002). A three-dimensional hydrostatic model for coastal and ocean modelling using a generalised topography following co-ordinate system. Ocean Modelling, 4, 173–205.
  • Pratte, B. D., & Baines, W. D. (1967). Profiles of the round turbulent jet in a cross flow. Journal of Hydraulic Division, 93(HY6), 53–64.
  • Priestly, C. H. B. (1956). A working theory of the bent-over plume of hot gas. Quarterly Journal of the Royal Meteorological Society, 82, 165–176.
  • Rajaratnam, N. (1976). Turbulent jets. Amsterdam: Elsevier Scientific Publishing Company.
  • Roberts, P. J. W., Salas, H. J., Reiff, F. M., Libhaber, M., Labbe, A., & Thomson, J. C. (2010). Marine wastewater outfalls and treatment systems. London: IWA Publishing.
  • Rodi, W. (1982). Turbulent buoyant jets and plumes. Oxford: Pergamon Press.
  • Shahryar, G., & Moshfegh, B. (2013). Evaluation of RANS models in predicting low Reynolds, free, turbulent round jet. Journal of Fluids Engineering, 136(1), 011201.
  • Sherif, S. A., & Pletcher, R. H. (1989). Measurements of the flow and turbulence characteristics of round jets in crossflow. Journal of Fluids Engineering, 111, 165–171.
  • Sotiropulos, F. (2005). Introduction to statistical turbulence modelling for hydraulic engineering flows. In P. D. Bates, S. N. Line, & R. I. Ferguson (Eds.), Computational fluid dynamics: Applications in environmental hydraulics (pp. 91–120). Chichester: Wiley.
  • Tang, H. S., Paik, J., Sotiropoulos, F., & Khangaonkar, T. (2008). Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. Journal of Hydraulic Engineering, 134(9), 1210–1224.
  • Vested, H. J., Justesen, P., & Ekebjaerg, L. (1992). Advection-dispersion modelling in three dimensions. Applied Mathematical Modelling, 16, 506–519.
  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194.
  • Wright, S. J. (1977). Mean behavior of buoyant jets in a crossflow. Journal of Hydraulic Division, 103(HY5), 499–513.
  • Wright, S. J. (1984). Buoyant jets in density-stratified crossflow. Journal of Hydraulic Engineering, 110, 643–656.
  • Yang, L., Ligrani, P., Ren, J., & Jiang, H. (2015). Unsteady structure and development of a row of impingement jets, including Kelvin–Helmholtz vortex development. Journal of Fluids Engineering, 137(5), 051201.
  • Zeng, Y.-H., & Huai, W.-X. (2008). Characteristics of round thermal discharging in a flowing environment. Journal of Hydro-Environment Research, 2, 164–171.
  • Zhang, X. Y., & Adams, E. E. (1999). Prediction of near field plume characteristics using a far field circulation model. Journal of Hydraulic Engineering, 125(3), 233–241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.