211
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Slope control on ambient fluid entrainment of subaqueous density flows with steady sustained inflows

, , &
Pages 329-336 | Received 02 Jul 2019, Accepted 10 May 2020, Published online: 13 Oct 2020

References

  • Alavian, V. (1986). Behavior of density currents on an incline. Journal of Hydraulic Engineering, 112(1), 27–42. doi: 10.1061/(ASCE)0733-9429(1986)112:1(27)
  • Blanchette, F., Piche, V., Meiburg, E., & Strauss, M. (2006). Evaluation of a simplified approach for simulating gravity currents over slopes of varying angles. Computers & Fluids, 35(5), 492–500. doi: 10.1016/j.compfluid.2005.04.002
  • Choi, S. U., & Garcia, M. H. (2002). k-ϵ turbulence modeling of density currents developing two dimensionally on a slope. Journal of Hydraulic Engineering, 128(1), 55–63. doi: 10.1061/(ASCE)0733-9429(2002)128:1(55)
  • Christodoulou, G. (1986). Interfacial mixing in stratified flows. Journal of Hydraulic Research, 24(2), 77–92. doi: 10.1080/00221688609499323
  • Dallimore, C. J., Imberger, J., & Ishikawa, T. (2001). Entrainment and turbulence in a saline underflow in Lake Ogawara. Journal of Hydraulic Engineering, 127(11), 937–948. doi: 10.1061/(ASCE)0733-9429(2001)127:11(937)
  • Ellison, T. H., & Turner, J. S. (1959). Turbulent entrainment in stratified flows. Journal of Fluid Mechanics, 6(03), 423–448. doi: 10.1017/S0022112059000738
  • Farrell, G. J., & Stefan, H. G. (1988). Mathematical modeling of plunging reservoir flows. Journal of Hydraulic Research, 26(5), 525–537. doi: 10.1080/00221688809499191
  • Fernandez, R. L., & Imberger, J. (2006). Bed roughness induced entrainment in a high Richardson number underflow. Journal of Hydraulic Research, 44(6), 725–738. doi: 10.1080/00221686.2006.9521724
  • Ferziger, J. H., Peric, M., & Leonard, A. (1999). Computational methods for fluid dynamics. Springer.
  • Fukushima, Y., & Watanabe, M. (1990). Numerical simulation of density underflow by the k-ϵ turbulence model. Proceedings of Hydraulic Engineering, 34, 187–192. doi: 10.2208/prohe.34.187
  • Garcia, M. H. (1993). Hydraulic jumps in sediment-driven bottom currents. Journal of Hydraulic Engineering, 119(10), 1094–1117. doi: 10.1061/(ASCE)0733-9429(1993)119:10(1094)
  • Henkes, R. A. W. M., Vlugt, F. F. V. D., & Hoogendoorn, C. J. (1991). Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models. International Journal of Heat and Mass Transfer, 34(2), 377–388. doi: 10.1016/0017-9310(91)90258-G
  • Huang, H. Q., Imran, J., & Pirmez, C. (2005). Numerical model of turbidity currents with a deforming bottom boundary. Journal of Hydraulic Engineering, 131(4), 283–293. doi: 10.1061/(ASCE)0733-9429(2005)131:4(283)
  • Huang, H. Q., Imran, J., & Pirmez, C. (2007). Numerical modeling of poorly sorted depositional turbidity currents. Journal of Geophysical Research Oceans, 112(112), 1–15. doi:10.1029/2006JC003778
  • Huang, H. Q., Imran, J., & Pirmez, C. (2008). Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. Journal of Hydraulic Engineering, 134(9), 1199–1209. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1199)
  • Huang, H. Q., Imran, J., & Pirmez, C. (2009). Nondimensional parameters of depth-averaged gravity flow models. Journal of Hydraulic Research, 47(4), 455–465. doi: 10.1080/00221686.2009.9522021
  • Huang, H. Q., Imran, J., & Pirmez, C. (2012). The depositional characteristics of turbidity currents in submarine sinuous channels. Marine Geology, 329-331, 93–102. doi: 10.1016/j.margeo.2012.08.003
  • Islam, M. A., & Imran, J. (2010). Vertical structure of continuous release saline and turbidity currents. Journal of Geophysical Research Oceans, 115(C8), 396–413. doi:10.1029/2009JC005365
  • Kneller, B., Nasrazadani, M. M., Radhakrishnan, S., & Meiburg, E. (2016). Long-range sediment transport in the world’s oceans by stably stratified turbidity currents. Journal of Geophysical Research: Oceans, 121(12), 8608–8620. doi: 10.1002/2016JC011978
  • Lofquist, K. (1960). Flow and stress near an interface between stratified liquids. Physics of Fluids, 3(2), 158–175. doi: 10.1063/1.1706013
  • Meiburg, E., & Kneller, B. (2010). Turbidity currents and their deposits. Annual Review of Fluid Mechanics, 42(1), 135–56. doi: 10.1146/annurev-fluid-121108-145618
  • Middleton, G. V. (1993). Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences, 21(1), 89–114. doi: 10.1146/annurev.ea.21.050193.000513
  • Ozgokmen, T. M., & Fischer, P. F. (2008). On the role of bottom roughness in overflows. Ocean Modelling, 20(4), 336–361. doi: 10.1016/j.ocemod.2007.10.004
  • Parker, G., Garcia, M., Fukushima, Y., & Yu, W. (1987). Experiments on turbidity currents over an erodible bed. Journal of Hydraulic Research, 25(1), 123–147. doi: 10.1080/00221688709499292
  • Rodi, W. (1984). Turbulence models and their applications in hydraulics. International Association for Hydraulic Research. Monograph.
  • Steenhauer, K., Tokyay, T., & Constantinescu, G. (2017). Dynamics and structure of planar gravity currents propagating down an inclined surface. Physics of Fluids, 29(036604|36604), 1–17. doi:10.1063/1.4979063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.