263
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Inundation over land with increasing water depth using self-similarity analysis

ORCID Icon, ORCID Icon &
Pages 880-893 | Received 02 Aug 2021, Accepted 12 Apr 2022, Published online: 11 Aug 2022

References

  • Apotsos, A., Jaffe, B. E., & Gelfenbaum, G. (2011). Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis. Coastal Engineering, 58(11), 1034–1048. https://doi.org/10.1016/j.coastaleng.2011.06.002
  • Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027
  • Carrier, G. F., & Greenspan, H. P. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 4(1), 97–109. https://doi.org/10.1017/S0022112058000331
  • Carrier, G. F., Wu, T. T., & Yeh, H. (2003). Tsunami run-up and draw-down on a plane beach. Journal of Fluid Mechanics, 475, 79–99. https://doi.org/10.1017/S0022112002002653
  • Chanson, H. A. (2008). A simple solution of the laminar dam break wave. Journal of Applied Fluid Mechanics, 1(1), 1–10. https://doi.org/10.36884/jafm.1.01.11831
  • Chanson, H. A. (2009). Application of the method of characteristics to the dam break wave problem. Journal of Hydraulic Research, 47(1), 41–49. https://doi.org/10.3826/jhr.2009.2865
  • Deng, X., Liu, H., Jiang, Z., & Baldock, T. E. (2016). Swash flow properties with bottom resistance based on the method of characteristics. Coastal Engineering, 114, 25–34. https://doi.org/10.1016/j.coastaleng.2016.03.012
  • Dong, B., Xia, J., Zhou, M., Deng, S., Ahmadian, R., & Falconer, R. A. (2021). Experimental and numerical model studies on flash flood inundation processes over a typical urban street. Advances in Water Resources, 147, 103824. https://doi.org/10.1016/j.advwatres.2020.103824
  • Dong, J., Wang, B.-L., & Liu, H. (2014). Run-up of non-breaking double solitary waves with equal wave heights on a plane beach. Journal of Hydrodynamics, 26(6), 939–950. https://doi.org/10.1016/S1001-6058(14)60103-7
  • Dressler, R. F. (1952). Hydraulic resistance effect upon the dam-break functions. Journal of Research of the National Bureau of Standards, 49(3), 217–225. doi:10.6028/jres.049.021
  • Figueiredo, J., & Clain, S. (2020). On the solution of the slope beach problem in the context of shallow-water code benchmarking: why non-linearization of the initial waveforms is essential. Advances in Water Resources, 145, 103751. https://doi.org/10.1016/j.advwatres.2020.103751
  • Ghimire, B. (2009). Hydraulic Analysis of Free-Surface Flows into Highly Permeable Porous Media and Its Applications [Doctoral thesis]. Kyoto University. https://doi.org/10.14989/doctor.k14916
  • Guard, P. A., & Baldock, T. E. (2007). The influence of seaward boundary conditions on swash zone hydrodynamics. Coastal Engineering, 54(4), 321–331. https://doi.org/10.1016/j.coastaleng.2006.10.004
  • Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., & Werner, M. G. F. (2005). An adaptive time step solution for raster-based storage cell modelling of floodplain inundation. Advances in Water Resources, 28(9), 975–991. https://doi.org/10.1016/j.advwatres.2005.03.007
  • Iwasa, Y., & Inoue, K. (1984, September 10–14). Numerical Effects of Non-linear Convective Terms on Two-Dimensional Flood Flows Invasion Analysis. Paper presented at the meeting of International Conference of Hydrosoft’84, Protoroz, Yugoslavia.
  • Khakimzyanov, G., Shokina, N. Y., Dutykh, D., & Mitsotakis, D. (2016). A new run-up algorithm based on local high-order analytic expansions. Journal of Computational and Applied Mathematics, 298, 82–96. https://doi.org/10.1016/j.cam.2015.12.004
  • Peregrine, D. H., & Williams, S. M. (2001). Swash overtopping a truncated plane beach. Journal of Fluid Mechanics, 440, 391–399. https://doi.org/10.1017/S002211200100492X
  • Puay, H. T. (2010). Fundamental Characteristics of Fluidable Material Dam Break Flow with Finite Extent and Application [Doctoral thesis]. Kyoto University. https://doi.org/10.14989/doctor.k15344
  • Ritter, A. (1892). Die Fortpflanzung der Wasserwellen. Vereine Deutcher Ingenieure Zeitswchrift, 36, 947–954.
  • Savant, G., Trahan, C. J., Pettey, L., McAlpin, T. O., Bell, G. L., & McKnight, C. J. (2019). Urban and overland flow modeling with dynamic adaptive mesh and implicit diffusive wave equation solver. Journal of Hydrology, 573, 13–30. https://doi.org/10.1016/j.jhydrol.2019.03.061
  • Seyedashraf, O., Rezaei, A., & Akhtari, A. A. (2017). Dam break flow solution using artificial neural network. Ocean Engineering, 142, 125–132. https://doi.org/10.1016/j.oceaneng.2017.07.002
  • Shen, M. C., & Meyer, R. E. (1963). Climb of a bore on a beach. Part3. Run-up. Journal of Fluid Mechanics, 16(1), 113–125. https://doi.org/10.1017/S0022112063000628
  • Shirai, H., Hosoda, T., & Puay H. T. (2012). Basic characteristics of tsunami invasion processes over land based on self-similarity distribution analysis. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 68(4), I_1531–I_1536 (in Japanese). https://doi.org/10.2208/jscejhe.68.I_1531
  • Shirai, H., Hosoda, T., & Kobayashi, D. (2013). Some considerations of basic characteristics of tsunami invasion processes based on self-similarity distribution analysis. Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics), 69(2), I_563–I_572 (in Japanese). https://doi.org/10.2208/jscejam.69.I_563
  • Shirai, H., & Hosoda, T. (2014). Basic characteristics of tsunami invasion processes over land after overtopping seawall. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70(4), I_751–I_756 (in Japanese). https://doi.org/10.2208/jscejhe.70.I_751
  • Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523–545. https://doi.org/10.1017/S002211208700329X
  • Tang, J., Shen, Y., Causon, D. M., Qian, L., & Mingham, C. G. (2017). Numerical study of periodic long wave run-up on a rigid vegetation sloping beach. Coastal Engineering, 121, 158–166. https://doi.org/10.1016/J.COASTALENG.2016.12.004
  • Varsoliwala, A., & Singh, T. (2021). Mathematical modeling of tsunami wave propagation at mid ocean and its amplification and run-up on shore. Journal of Ocean Engineering and Science, 6(4), 367–375. https://doi.org/10.1016/j.joes.2021.03.003
  • Wei, Z., & Jia, Y. (2014). Simulation of nearshore wave processes by a depth-integrated non-hydrostatic finite element model. Coastal Engineering, 83(1), 93–107. https://doi.org/10.1016/j.coastaleng.2013.10.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.