675
Views
13
CrossRef citations to date
0
Altmetric
Research paper

A review of physical experiments for leak detection in water pipes through transient tests for addressing future research

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 894-906 | Received 17 Aug 2021, Accepted 12 Apr 2022, Published online: 10 Aug 2022

References

  • Abbasi, T., & Abbasi, S. A. (2011). Small hydro and the environmental implications of its extensive utilization. Renewable and Sustainable Energy Reviews, 15(4), 2134–2143. doi:10.1016/j.rser.2010.11.050
  • Abdulshaheed, A., Mustapha, F., & Ghavamian, A. (2017). A pressure-based method for monitoring leaks in a pipe distribution system: A review. Renewable and Sustainable Energy Reviews, 69, 902–911. doi:10.1016/j.rser.2016.08.024
  • Al-Khomairi, A. (2008). Leak detection in long pipelines using the least squares method. Journal of Hydraulic Research, 46(3), 392–401. doi:10.3826/jhr.2008.3191
  • Amin, M. M., Hadi, A., & Ghazali, M. F. (2014). Leakage detection in pipeline using synchrosqueeze wavelet transform. Applied Mechanics and Materials, 465-466, 467–471. doi: 10.4028/www.scientific.net/AMM.465-466.467
  • Asada, Y., Kimura, M., Azechi, I., Iida, T., & Kubo, N. (2020). Transient damping method for narrowing down leak location in pressurized pipelines. Hydrological Research Letters, 14(1), 41–47. doi:10.3178/hrl.14.41
  • Ayati, A. H., Haghighi, A., & Lee, P. J. (2019). Statistical review of major standpoints in hydraulic transient-based leak detection. Journal of Hydraulic Structures, 5(1), 1–26. doi:10.22055/JHS.2019.27926.1095
  • Beck, S., Curren, M., Sims, N., & Stanway, R. (2005). Pipeline network features and leak detection by cross-correlation analysis of reflected waves. Journal of Hydraulic Engineering, 131(8), 715–723. doi:10.1061/(ASCE)0733-9429(2005)131:8(715)
  • Beck, S., Foong, J., & Staszewski, W. (2006). Wavelet and cepstrum analyses of leaks in pipe networks. In A. Bucchianico, R.M.M. Mattheij, & M.A. Peletier (Eds.), Progress in industrial mathematics at ECMI 2004 (pp. 559–563). Springer.
  • Brunone, B. (1999). Transient test-based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, 125(5), 302–306. doi:10.1061/(ASCE)0733-9496(1999)125:5(302)
  • Brunone, B., Capponi, C., & Meniconi, S. (2021). Design criteria and performance analysis of a smart portable device for leak detection in water transmission mains. Measurement, 183, 109844. doi:10.1016/j.measurement.2021.109844
  • Brunone, B., & Ferrante, M. (2001). Detecting leaks in pressurised pipes by means of transients. Journal of Hydraulic Research, 39(5), 539–547. doi:10.1080/00221686.2001.9628278
  • Brunone, B., & Ferrante, M. (2004). Pressure waves as a tool for leak detection in closed conduits. Urban Water Journal, 1(2), 145–155. doi:10.1080/1573062042000271073
  • Brunone, B., Ferrante, M., & Meniconi, S. (2008). Portable pressure wave-maker for leak detection and pipe system characterization. Journal - American Water Works Association, 100(4), 108–116. doi:10.1002/j.1551-8833.2008.tb09607.x
  • Brunone, B., Meniconi, S., Capponi, C., & Ferrante, M. (2015). Leak-induced pressure decay during transients in viscoelastic pipes. Preliminary results. Procedia Engineering, 119, 243–252. doi:10.1016/j.proeng.2015.08.882
  • Capponi, C., Ferrante, M., Zecchin, A. C., & Gong, J. (2017). Leak detection in a branched system by inverse transient analysis with the admittance matrix method. Water Resources Management, 31(13), 4075–4089. doi:10.1007/s11269-017-1730-6
  • Che, T., Duan, H., & Lee, P. (2021). Transient wave-based methods for anomaly detection in fluid pipes: A review. Mechanical Systems and Signal Processing, 160, 107874. doi:10.1016/j.ymssp.2021.107874
  • Colombo, A., & Karney, B. (2002). Energy and costs of leaky pipes: toward comprehensive picture. Journal of Water Resources Planning and Management, 128(6), 441–450. doi:10.1061/(ASCE)0733-9496(2002)128:6(441)
  • Colombo, A., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212–227. doi:10.1016/j.jher.2009.02.003
  • Contractor, D. (1965). The reflection of water hammer pressure waves from minor losses. Journal of Basic Engineering, 87(2), 445–451. doi:10.1115/1.3650568
  • Covas, D., & Ramos, H. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, 136(2), 248–257. doi:10.1061/(ASCE)0733-9496(2010)136:2(248)
  • Covas, D., Ramos, H., Graham, N., & Maksimovic, C. (2004). Application of hydraulic transients for leak detection in water supply systems. Water Supply, 4(5-6), 365–374. doi:10.2166/ws.2004.0127
  • Duan, H., Pan, B., Wang, M., Chen, L., Zheng, F., & Zhang, Y. (2020). State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology-Aqua, 69(8), 858–893. doi:10.2166/aqua.2020.048
  • Ferrante, M., & Brunone, B. (2003). Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis. Advances in Water Resources, 26(1), 107–116. doi:10.1016/S0309-1708(02)00102-1
  • Ferrante, M., Brunone, B., & Meniconi, S. (2007). Wavelets for the analysis of transient pressure signals for leak detection. Journal of Hydraulic Engineering, 133(11), 1274–1282. doi:10.1061/(ASCE)0733-9429(2007)133:11(1274)
  • Ferrante, M., Brunone, B., & Meniconi, S. (2009a). Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model. Journal of Water Supply: Research and Technology-Aqua, 58(2), 95–106. doi:10.2166/aqua.2009.022
  • Ferrante, M., Brunone, B., & Meniconi, S. (2009b). Leak-edge detection. Journal of Hydraulic Research, 47(2), 233–241. doi:10.3826/jhr.2009.3220
  • Ferrante, M., Brunone, B., Meniconi, S., Karney, B. W., & Massari, C. (2014). Leak size, detectability and test conditions in pressurized pipe systems. Water Resources Management, 28(13), 4583–4598. doi:10.1007/s11269-014-0752-6
  • Filion, Y. R., MacLean, H. L., & Karney, B. W. (2004). Life-cycle energy analysis of a water distribution system. Journal of Infrastructure Systems, 10(3), 120–130. doi:10.1061/(ASCE)1076-0342(2004)10:3(119)
  • Ghazali, M., Beck, S., Shucksmith, J., Boxall, J., & Staszewski, W. (2012). Comparative study of instantaneous frequency based methods for leak detection in pipeline networks. Mechanical Systems and Signal Processing, 29, 187–200. doi:10.1016/j.ymssp.2011.10.011
  • Ghazali, M., Staszewski, W., Shucksmith, J., Boxall, J., & Beck, S. (2011). Instantaneous phase and frequency for the detection of leaks and features in a pipeline system. Structural Health Monitoring, 10(4), 351–360. doi:10.1177/1475921710373958
  • Ghorbanian, V., Karney, B., & Guo, Y. (2017). Intrinsic relationship between energy consumption, pressure, and leakage in water distribution systems. Urban Water Journal, 14(5), 515–521. doi:10.1080/1573062X.2016.1223325
  • Gong, J., Lambert, M. F., Nguyen, S. T., Zecchin, A. C., & Simpson, A. R. (2018). Detecting thinner-walled pipe sections using a spark transient pressure wave generator. Journal of Hydraulic Engineering, 144(2), 06017027. doi:10.1061/(ASCE)HY.1943-7900.0001409
  • Gong, J., Lambert, M. F., Zecchin, A. C., & Simpson, A. R. (2016). Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal. Journal of Hydraulic Research, 54(2), 210–219. doi:10.1080/00221686.2015.1116115
  • Guo, X., Yang, K., & Guo, Y. (2012). Leak detection in pipelines by exclusively frequency domain method. Science China Technological Sciences, 55(3), 743–752. doi:10.1007/s11431-011-4707-3
  • Haghighi, A., Covas, D., & Ramos, H. (2012). Direct backward transient analysis for leak detection in pressurized pipelines: from theory to real application. Journal of Water Supply: Research and Technology-Aqua, 61(3), 189–200. doi:10.2166/aqua.2012.032
  • Holmboe, E. L., & Rouleau, W. T. (1967). The effect of viscous shear on transients in liquid lines. Journal of Basic Engineering, 89(1), 174–180. doi:10.1115/1.3609549
  • Jönsson L. (1994). Leak detection in pipelines using hydraulic transients. In W.R. Blain & K.L. Katsifarakis (Eds.), WIT Transactions on Ecology and the Environment, (Vol 7, pp. 343–352). Wit Press. doi: 10.2495/HY940391
  • Jönsson, L. (1999). Hydraulic transients as a monitoring device. Proc. XXVIII Congress of Intl. Assoc. of Hydraulic Engrg. & Res., Delft, the Netherlands.
  • Jönsson L. (2001a). Experimental studies of leak detection using hydraulic transients. Proc., XXIX IAHR Congress, 16-21 September 2001. Beijing, China (pp. 559–565).
  • Jönsson L. (2001b). Interaction of a hydraulic transient with a leak in a pipe flow. Proc., 14th Australasian Fluid Mechanics Conference, University of Adelaide.
  • Keramat, A., Wang, X., Louati, M., Meniconi, S., Brunone, B., & Ghidaoui, M. S. (2019). Objective functions for transient-based pipeline leakage detection in a noisy environment: least square and matched-filter. Journal of Water Resources Planning and Management, 145(10), 04019042. doi:10.1061/(ASCE)WR.1943-5452.0001108
  • Lee, P., Lambert, M., Simpson, A., Vítkovsky, J., & Misiunas, D. (2007). Leak location in single pipelines using transient reflections. Australasian Journal of Water Resources, 11(1), 53–65. doi:10.1080/13241583.2007.11465311
  • Lee, P. J., Lambert, M. F., Simpson, A. R., Vítkovsky, J. P., & Liggett, J. (2006). Experimental verification of the frequency response method for pipeline leak detection. Journal of Hydraulic Research, 44(5), 693–707. doi:10.1080/00221686.2006.9521718
  • Lee, P. J., Vítkovsky, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. (2007). Leak location in pipelines using the impulse response function. Journal of Hydraulic Research, 45(5), 643–652. doi:10.1080/00221686.2007.9521800
  • Liou, C. (1998). Pipeline leak detection by impulse response extraction. Journal of Fluids Engineering, 120(4), 833–838. doi:10.1115/1.2820746
  • Liou, J. C., & Tian, J. (1995). Leak detection—transient flow simulation approaches. Journal of Energy Resources Technology, 117(3), 243–248. doi:10.1115/1.2835348
  • Liu, Z., & Kleiner, Y. (2013). State of the art review of inspection technologies for condition assessment of water pipes. Measurement, 46(1), 1–15. doi:10.1016/j.measurement.2012.05.032
  • Martins, N. C., Brunone, B., Meniconi, S., Ramos, H. M., & Covas, I. D. (2018). Efficient computational fluid dynamics model for transient laminar flow modeling: Pressure wave propagation and velocity profile changes. Journal of Fluids Engineering, 140(1), 011102. doi:10.1115/1.4037504
  • Martins, N. M. C., Brunone, B., Meniconi, S., Ramos, H. M., & Covas, D. I. C. (2017). CFD and 1D approaches for the unsteady friction analysis of low reynolds number turbulent flows. Journal of Hydraulic Engineering, 143(12), 04017050. doi:10.1061/(ASCE)HY.1943-7900.0001372
  • Meniconi, S., Brunone, B., Ferrante, M., Capponi, C., Carrettini, C., Chiesa, C., & Lanfranchi, E. (2015). Anomaly pre-localization in distribution–transmission mains by pump trip: preliminary field tests in the Milan pipe system. Journal of Hydroinformatics, 17(3), 377–389. doi:10.2166/hydro.2014.038
  • Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011). Small amplitude sharp pressure waves to diagnose pipe systems. Water Resources Management, 25(1), 79–96. doi:10.1007/s11269-010-9688-7
  • Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2013). Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow. Drinking Water Engineering and Science, 6(1), 11–16. doi:10.5194/dwes-6-11-2013
  • Meniconi, S., Brunone, B., & Frisinghelli, M. (2018). On the role of minor branches, energy dissipation, and small defects in the transient response of transmission mains. Water, 10(2), 187. doi:10.3390/w10020187
  • Meniconi, S., Capponi, C., Frisinghelli, M., & Brunone, B. (2021). Leak detection in a real transmission main through transient tests: deeds and misdeeds. Water Resources Research, 57(3), e2020WR027838. doi:10.1029/2020WR027838
  • Meniconi, S., Cifrodelli, M., Capponi, C., Duan, H.-F., & Brunone, B. (2021). Transient response analysis of branched pipe systems toward a reliable skeletonization. Journal of Water Resources Planning and Management, 147(2), 04020109. doi:10.1061/(ASCE)WR.1943-5452.0001319
  • Nogueira Vilanova, M. R., & Perrella Balestrieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701–714. doi:10.1016/j.rser.2013.11.024
  • Nogueira Vilanova, M. R., & Perrella Balestrieri, J. A. (2015). Modeling of hydraulic and energy efficiency indicators for water supply systems. Renewable and Sustainable Energy Reviews, 48, 540–557. doi:10.1016/j.rser.2015.04.024
  • Pezzinga, G., Brunone, B., & Meniconi, S. (2016). Relevance of pipe period on kelvin-voigt viscoelastic parameters: 1D and 2D inverse transient Analysis. Journal of Hydraulic Engineering, 142(12), 04016063. doi:10.1061/(ASCE)HY.1943-7900.0001216
  • Sharp, W. W., & Walski, T. M. (1988). Predicting internal roughness in water mains. Journal - American Water Works Association, 80(11), 34–40. doi:10.1002/j.1551-8833.1988.tb03132.x
  • Shucksmith, J. D., Boxall, J. B., Staszewski, W. J., Seth, A., & Beck, S. B. (2012). Onsite leak location in a pipe network by cepstrum analysis of pressure transients. Journal - American Water Works Association, 104(8), E457–E465. doi:10.5942/jawwa.2012.104.0108
  • Soares, A. K., Covas, D. I., & Reis, L. F. R. (2011). Leak detection by inverse transient analysis in an experimental pvc pipe system. Journal of Hydroinformatics, 13(2), 153–166. doi:10.2166/hydro.2010.012
  • Souza, A., Cruz, S., & Pereira, J. (2000). Leak detection in pipelines through spectral analysis of pressure signals. Brazilian Journal of Chemical Engineering, 17(4-7), 557–564. doi:10.1590/S0104-66322000000400020
  • Stephens, M. L., Lambert, M. F., Simpson, A. R., & Vítkovsky, J. P. (2011). Calibrating the water-hammer response of a field pipe network by using a mechanical damping model. Journal of Hydraulic Engineering, 137(10), 1225–1237. doi:10.1061/(ASCE)HY.1943-7900.0000413
  • Sun, J., Wang, R., & Duan, H.-F. (2016). Multiple-fault detection in water pipelines using transient-based time-frequency analysis. Journal of Hydroinformatics, 18(6), 975–989. doi:10.2166/hydro.2016.232
  • Taghvaei, M., Beck, S., & Boxall, J. (2010). Leak detection in pipes using induced water hammer pulses and cepstrum analysis. Int. Journal of COMADEM, 13(1), 19.
  • Taghvaei, M., Beck, S., & Staszewski, W. (2006). Leak detection in pipelines using cepstrum analysis. Measurement Science and Technology, 17(2), 367–372. doi:10.1088/0957-0233/17/2/018
  • Taghvaei, M., Beck, S., & Staszewski, W. (2007). Leak detection in pipeline networks using low-profile piezoceramic transducers. Structural Control and Health Monitoring, 14(8), 1063–1082. doi:10.1002/stc.187
  • Vítkovsky, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection. Journal of Water Resources Planning and Management, 133(6), 519–530. doi:10.1061/(ASCE)0733-9496(2007)133:6(519)
  • Wang, X., Ghidaoui, M. S., & Lin, J. (2019). Identification of multiple leaks in pipeline III: Experimental results. Mechanical Systems and Signal Processing, 130, 395–408. doi:10.1016/j.ymssp.2019.05.015
  • Wang, X. J., Lambert, M. F., Simpson, A. R., Liggett, J. A., & Vítkovsky, J. P. (2002). Leak detection in pipelines using the damping of fluid transients. Journal of Hydraulic Engineering, 128(7), 697–711. doi:10.1061/(ASCE)0733-9429(2002)128:7(697)
  • Wang, X., Lin, J., Keramat, A., Ghidaoui, M. S., Meniconi, S., & Brunone, B. (2019). Matched-field processing for leak localization in a viscoelastic pipe: An experimental study. Mechanical Systems and Signal Processing, 124, 459–478. doi:10.1016/j.ymssp.2019.02.004
  • Xu, X., & Karney, B. (2017). An overview of transient fault detection techniques. In C. Verde & L. Torres (Eds.), Modeling and monitoring of pipelines and networks (pp. 13–37). Springer.
  • Yusop, M. H., Ghazali, M. F., Yusof, M. F. M., & Hamat, W. S. W. (2019). Improvement of cepstrum analysis for the purpose to detect leak, feature and its location in water distribution system based on pressure transient analysis. Journal of Mechanical Engineering (JMechE), SI, 4(4), 103–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.