535
Views
5
CrossRef citations to date
0
Altmetric
Technical Note

Sediment transport capacity of low sediment-laden flows

, , &
Pages 996-1008 | Received 05 Jan 2021, Accepted 18 Apr 2022, Published online: 16 Aug 2022

References

  • Ackers, P., & White, W. R. (1973). Sediment Transport: New Approach and Analysis. Journal of the Hydraulics Division, 99(11), 2041–2060. https://doi.org/10.1061/JYCEAJ.0003791
  • Ahmandi, S. H., Amin, S., Keshavarzi, A. R., & Mirzamostafa, N. (2006). Simulating watershed outlet sediment concentration using the ANSWERS model by applying two sediment transport capacity equations. Biosystems Engineering, 94(4), 615–626. https://doi.org/10.1016/j.biosystemseng.2006.04.015
  • Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. Geological Survey Professional Paper, 422-I. Washington, D.C.: US Department of Interior. https://doi.org/10.3133/PP422I.
  • Chen, X. Q., Yan, Y., Fu, R. S., Dou, X. P., & Zhang, E. F. (2008). Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quaternary International, 186(1), 55–64. https://doi.org/10.1016/j.quaint.2007.10.003
  • Deng, S. S., Xia, J. Q., Zhou, M. R., & Lin, F. F. (2019). Coupled modeling of bed deformation and bank erosion in the Jingjiang Reach of the middle Yangtze River. Journal of Hydrology, 568, 221–233. https://doi.org/10.1016/j.jhydrol.2018.10.065
  • Engelund, F., & Hansen, E. (1967). A monograph on sediment transport in alluvial streams. Teknisk forlag. http://resolver.tudelft.nl/uuid:81101b08-04b5-4082-9121-861949c336c9.
  • Habersack, H., Hein, T., Stanica, A., Liska, L., Mair, R., Jäger, E., Hauer, C., & Bradley, C. (2016). Challenges of river basin management: current status of, and prospects for, the River Danube from a river engineering perspective. Science of Total Environment, 543, 828–845. https://doi.org/10.1016/j.scitotenv.2015.10.123
  • Han, Q. W., & He, M. M. (2015). Mathematic modelling of non-equilibrium suspended load transport, reservoir sedimentation, and fluvial processes. In C. T. Yang, & L. K. Wang (Eds.), Advances in Water Resources Engineering (pp. 137–181). Springer International Publishing.
  • He, L., Chen, D., Zhang, S. Y., Liu, M., & Duan, G. L. (2018). Evaluating regime change of sediment transport in the Jingjiang River Reach, Yangtze River, China. Water, 10(3), 329. https://doi.org/10.3390/w10030329
  • Hessel, R., & Jetten, V. (2007). Suitability of transport equations in modeling soil erosion for a small Loess Plateau catchment. Engineering Geology, 91(1), 56–71. https://doi.org/10.1016/j.enggeo.2006.12.013
  • Hu, C. H. (2020). Implications of water-sediment co-varying trends in large rivers. Science Bulletin, 65(1), 4–6. https://doi.org/10.1016/j.scib.2019.10.014
  • Li, L., Ni, J. R., Chang, F., Yue, Y., Frolova, N., Magritsky, D., Borthwick, A. G. L., Ciais, P., Wang, Y. C., Zheng, C. M., & Wallingh, D. E. (2020). Global trends in water and sediment fluxes of the world’s large rivers. Science Bulletin, 65(1), 62–69. https://doi.org/10.1016/j.scib.2019.09.012
  • Li, Y. T. (1987). Preliminary study on the gradation of bed material load in equilibrium. Journal of Sediment Research, 1, 82–87. (In Chinese).
  • Liu, Q. Q., Chen, L., Li, J. C., & Singh, V. P. (2010). A non-equilibrium sediment transport model for rill erosion. Hydrological Processes, 21(8), 1074–1084. https://doi.org/10.1002/hyp.6288
  • Long, Y. Q., & Liang, G. T. (1994). Data Base of Sediment Transport in the Yellow River (Technical Report No. 9400). Zhengzhou: Institute of Hydraulic Research, Yellow River Conservation Commission. (In Chinese).
  • Meyer-Peter, E., & Müller, R. (1948, June). Formulas for bed-load transport . Report on Second Meeting of IAHR. Stockholm, Sweden. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7.
  • Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G., & Cai, C. F. (2019). Sediment transport capacity in erodible beds with reconstituted soils of different textures. Catena, 183, 104197. https://doi.org/10.1016/j.catena.2019.104197
  • Paul, R., & Ian, P. (2001). Spatial patterns of sediment delivery to valley floors: sensitivity to sediment transport capacity and hillslope hydrology relations. Hydrological Processes, 15(6), 1003–1018. https://doi.org/10.1002/hyp.231
  • Prosser, I. P., & Rustomji, P. (2000). Sediment transport capacity relations for overland flow. Progress in Physical Geography, 24(2), 179–193. https://doi.org/10.1177/030913330002400202
  • Tan, G. M., Fang, H. W., Dey, S., & Wu, W.M. (2018). Rui-Jin Zhang's Research on Sediment Transport. Journal of Hydraulic Engineering, 144(6), 02518002. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001464
  • van Rijn, L. C. (1984a). Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering, 110(10), 1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  • van Rijn, L. C. (1984b). Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering, 110(11), 1613–1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  • Wu, B., Wang, Z. L., Shen, N., & Wang, S. (2016). Modelling sediment transport capacity of rill flow for loess sediments on steep slopes. Catena, 147, 453–462. https://doi.org/10.1016/j.catena.2016.07.030
  • Wu, B. S., Maren, D. S., & Li, L. Y. (2008). Predictability of sediment transport in the Yellow River using selected transport formulae. International Journal of Sediment Research, 23(4), 283–298. https://doi.org/10.1016/S1001-6279(09)60001-9
  • Wuhan Institute of Hydraulic and Electrical Engineering (WIHEE). (1959). Study on the sediment transport capacity of the Middle and Lower Yangtze River (cont.) —the general law of energy balance of suspended sediment laden flow. Journal of Sediment Research, 4(3), 59–72. (In Chinese).
  • Xia, J. Q., Zhang, X. L., Li, J., Wang, Z. H., & Zhou, M. R. (2018). Modelling of hyperconcentrated flood and channel evolution in a braided reach using a dynamically coupled one-dimensional approach. Journal of Hydrology, 561, 622–635. https://doi.org/10.1016/j.jhydrol.2018.04.017
  • Yalin, M. S. (1963). An expression for bed-load transportation. Journal of the Hydraulics Division, 89(3), 221–250. https://doi.org/10.1061/JYCEAJ.0000874
  • Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the Hydraulics Division, 99(10), 1679–1704. https://doi.org/10.1061/JYCEAJ.0003766
  • Yang, C. T., Molinas, A., & Wu, B. S. (1996). Sediment Transport in the Yellow River. Journal of Hydraulic Engineering, 122(5), 237–244. https://doi.org/10.1061/(asce)0733-9429(1996)122:5(237)
  • Yuan, W. H., Yin, D. W., Finlayson, B., & Chen, Z. Y. (2012). Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam. Geomorphology, 147-148(8), 27–34. https://doi.org/10.1016/j.geomorph.2011.06.039
  • Zhan, Z. Z., Jiang, F. S., Chen, P. S., Gao, P. Y., Lin, J. S., Ge, H. L., Wang, M. K., & Huang, Y. H. (2020). Effect of gravel content on the sediment transport capacity of overland flow. Catena, 188, 104447. https://doi.org/10.1016/j.catena.2019.104447
  • Zhang, H. W., Huang, Y. D., & Zhao, L. J. (2001). A mathematical model for unsteady sediment transport in the Lower Yellow River. International Journal of Sediment Research, 16(2), 150–158.
  • Zhang, J. X., & Liu, H. (2007). A vertical 2-D numerical simulation of suspended sediment transport. Journal of Hydrodynamics, 19(2), 217–224. https://doi.org/10.1016/S1001-6058(07)60051-1
  • Zhang, R. J. (1961). River dynamics. China Industry Press. (In Chinese).
  • Zhang, R. J., & Xie, J. H. (1993). Sedimentation research in China: Systematic Selections. China Water and Power Press.
  • Zhou, G., Wang, H., Shao, X. J., & Jia, D. D. (2009). Numerical model for sediment transport and bed degradation in the Yangtze River channel downstream of Three Gorges Reservoir. Journal of Hydraulic Engineering, 135(9), 729–740. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(729)
  • Zhou, M. R., Xia, J. Q., & Deng, S. S. (2019). One-dimensional modelling of channel evolution in an alluvial river with the effect of large-scale regulation engineering. Journal of Hydrology, 575, 965–975. https://doi.org/10.1016/j.jhydrol.2019.05.074

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.