553
Views
2
CrossRef citations to date
0
Altmetric
Research paper

Hydraulic resistance of artificial vegetation patches in aligned and staggered configurations

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 220-232 | Received 06 Jun 2022, Accepted 02 Feb 2023, Published online: 26 Apr 2023

References

  • Afzalimehr, H., Riazi, P., Jahadi, M., & Singh, V. P. (2021). Effect of vegetation patches on flow structures and the estimation of friction factor. ISH Journal of Hydraulic Engineering, 27(sup1), 390–400. https://doi.org/10.1080/09715010.2019.1660920
  • Albayrak, I., Nikora, V., Miler, O., & O’Hare, M. (2012). Flow-plant interactions at a leaf scale: Effects of leaf shape, serration, roughness and flexural rigidity. Aquatic Sciences, 74(2), 267–286. https://doi.org/10.1007/s00027-011-0220-9
  • Arcement, G. J., & Schneider, V. R. (1989). Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. US Government Printing Office.
  • Bal, K., Struyf, E., Vereecken, H., Viaene, P., De Doncker, L., de Deckere, E., Mostaert, F., & Meire, P. (2011). How do macrophyte distribution patterns affect hydraulic resistances? Ecological Engineering, 37(3), 529–533. https://doi.org/10.1016/j.ecoleng.2010.12.018
  • Barnes, H. H. (1967). Roughness characteristics of natural channels (Issue 1849). US Government Printing Office.
  • Biggs, H. J. (2020). Aquatic vegetation monitoring with UAS. In D. R. Green, B. J. Gregory, & A. R. Karachok (Eds.), Unmanned aerial remote sensing (pp. 35–53). CRC Press.
  • Biggs, H. J., Haddadchi, A., & Hicks, D. M. (2021). Interactions between aquatic vegetation, hydraulics and fine sediment: A case study in the Halswell River, New Zealand. Hydrological Processes, 35(6), e14245. https://doi.org/10.1002/hyp.14245
  • Biggs, H. J., Nikora, V., Gibbins, C. N., Fraser, S., Green, D. R., Papadopoulos, K., & Hicks, D. M. (2018). Coupling Unmanned Aerial Vehicle (UAV) and hydraulic surveys to study the geometry and spatial distribution of aquatic macrophytes. Journal of Ecohydraulics, 3(1), 45–58. https://doi.org/10.1080/24705357.2018.1466666
  • Biggs, H. J., Nikora, V. I., Gibbins, C. N., Cameron, S. M., Papadopoulos, K., Stewart, M., Fraser, S., Vettori, D., Savio, M., & O’Hare, M. T. (2019). Flow interactions with an aquatic macrophyte: A field study using stereoscopic particle image velocimetry. Journal of Ecohydraulics, 4(2), 113–130. https://doi.org/10.1080/24705357.2019.1606677
  • Butcher, R. W. (1933). Studies on the ecology of rivers: I. On the distribution of macrophytic vegetation in the rivers of Britain. The Journal of Ecology, 21(1), 58–91. https://doi.org/10.2307/2255874
  • Champion, P. D., & Tanner, C. C. (2000). Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia, 441(1/3), 1–12. https://doi.org/10.1023/A:1017517303221
  • Chang, K., & Constantinescu, G. (2015). Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders. Journal of Fluid Mechanics, 776, 161–199. https://doi.org/10.1017/jfm.2015.321
  • Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill Civil Engineering Series.
  • Cornacchia, L., Licci, S., Nepf, H. M., Folkard, A. M., van der Wal, D., van de Koppel, J., Puijalon, S., & Bouma, T. J. (2019). Turbulence-mediated facilitation of resource uptake in patchy stream macrophytes. Limnology and Oceanography, 64(2), 714–727. https://doi.org/10.1002/lno.11070
  • Cowan, W. L. (1956). Estimating hydraulic roughness coefficients. Agricultural Engineering, 37(7), 473–475.
  • Figueiredo, B. R. S., Mormul, R. P., & Thomaz, S. M. (2015). Swimming and hiding regardless of the habitat: Prey fish do not choose between a native and a non-native macrophyte species as a refuge. Hydrobiologia, 746(1), 285–290. https://doi.org/10.1007/s10750-014-2096-x
  • Folkard, A. M. (2011). Flow regimes in gaps within stands of flexible vegetation: Laboratory flume simulations. Environmental Fluid Mechanics, 11(3), 289–306. https://doi.org/10.1007/s10652-010-9197-5
  • Green, J. C. (2005). Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Research and Applications, 21(6), 671–686. https://doi.org/10.1002/rra.854
  • Green, J. C. (2006). Effect of macrophyte spatial variability on channel resistance. Advances in Water Resources, 29(3), 426–438. https://doi.org/10.1016/j.advwatres.2005.05.010
  • Gurnell, A. M., Van Oosterhout, M. P., De Vlieger, B., & Goodson, J. M. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680. https://doi.org/10.1002/rra.929
  • Hicks, D. M., & Mason, P. D. (1998). Roughness characteristics of New Zealand rivers: National Institute of Water and Atmospheric Research Ltd. Water Resources Publications, LLC.
  • Husson, E., Hagner, O., & Ecke, F. (2014). Unmanned aircraft systems help to map aquatic vegetation. Applied Vegetation Science, 17(3), 567–577. https://doi.org/10.1111/avsc.12072
  • Kouwen, N., & Unny, T. E. (1973). Flexible roughness in open channels. Journal of the Hydraulics Division, 99(5), 713–728. https://doi.org/10.1061/JYCEAJ.0003643
  • Kouwen, N., Unny, T. E., & Hill, H. M. (1969). Flow retardance in vegetated channels. Journal of the Irrigation and Drainage Division, 95(2), 329–342. https://doi.org/10.1061/JRCEA4.0000652
  • Larsen, L. G., Ma, J., & Kaplan, D. (2017). How important is connectivity for surface water fluxes? A generalized expression for flow through heterogeneous landscapes. Geophysical Research Letters, 44(20), 10,349–10,358. https://doi.org/10.1002/2017GL075432
  • Lee, B. E., & Soliman, B. F. (1977). An investigation of the forces on three dimensional bluff bodies in rough wall turbulent boundary layers. Journal of Fluids Engineering, 99(3), 503–509. https://doi.org/10.1115/1.3448828
  • Leonardi, S., Orlandi, P., & Antonia, R. A. (2007). Properties of d- and k-type roughness in a turbulent channel flow. Physics of Fluids, 19(12), 125101. https://doi.org/10.1063/1.2821908
  • Luhar, M., & Nepf, H. M. (2011). Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography, 56(6), 2003–2017. https://doi.org/10.4319/lo.2011.56.6.2003
  • Luhar, M., & Nepf, H. M. (2013). From the blade scale to the reach scale: A characterization of aquatic vegetative drag. Advances in Water Resources, 51, 305–316. https://doi.org/10.1016/j.advwatres.2012.02.002
  • Morris, H. M. (1955). Flow in rough conduits. Transactions of the American Society of Civil Engineers, 120(1), 373–398. https://doi.org/10.1061/TACEAT.0007206
  • Nepf, H. M. (2012). Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50(3), 262–279. https://doi.org/10.1080/00221686.2012.696559
  • Nikora, N., Nikora, V., & O’Donoghue, T. (2013). Velocity profiles in vegetated open-channel flows: Combined effects of multiple mechanisms. Journal of Hydraulic Engineering, 139(10), 1021–1032. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000779
  • Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., & Reid, M. (2008). Hydraulic Resistance due to aquatic vegetation in small streams: Field study. Journal of Hydraulic Engineering, 134(9), 1326–1332. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1326)
  • Savio, M. (2017). Turbulent structure and transport processes in open-channel flows with patchy-vegetated beds [University of Aberdeen]. https://abdn.alma.exlibrisgroup.com/discovery/delivery/44ABE_INST:44ABE_VU1/12152788030005941
  • Siniscalchi, F., & Nikora, V. (2012). Flow-plant interactions in open-channel flows: A comparative analysis of five freshwater plant species. Water Resources Research, 48(5), 1–13. https://doi.org/10.1029/2011WR011557
  • Siniscalchi, F., Nikora, V., & Aberle, J. (2012). Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces. Water Resources Research, 48(1), 1–14. https://doi.org/10.1029/2011WR011050
  • Taddei, S., Manes, C., & Ganapathisubramani, B. (2016). Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers. Journal of Fluid Mechanics, 798, 27–49. https://doi.org/10.1017/jfm.2016.312
  • Vettori, D., Niewerth, S., Aberle, J., & Rice, S. P. (2021). A link between plant stress and hydrodynamics? Indications from a freshwater macrophyte. Water Resources Research, 57(9), e2021WR029618. https://doi.org/10.1029/2021WR029618
  • Wolfe, S. A., & Nickling, W. G. (1993). The protective role of sparse vegetation in wind erosion. Progress in Physical Geography: Earth and Environment, 17(1), 50–68. https://doi.org/10.1177/030913339301700104
  • Wright, K., Hiatt, M., & Passalacqua, P. (2018). Hydrological connectivity in vegetated river deltas: The importance of patchiness below a threshold. Geophysical Research Letters, 45(19), 10–416. https://doi.org/10.1029/2018GL079183
  • Zampiron, A., Nikora, V., Cameron, S., Patella, W., Valentini, I., & Stewart, M. (2020). Effects of streamwise ridges on hydraulic resistance in open-channel flows. Journal of Hydraulic Engineering, 146(1), 6019018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001647

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.