671
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Stability of mass oscillations in hydropower plants with brook intakes

, , &
Pages 583-591 | Received 20 Aug 2021, Accepted 18 May 2023, Published online: 07 Aug 2023

References

  • Brekke, H. (1984). A stability study on hydro power plant governing including the influence from a quasi nonlinear damping of oscillatory flow and from the Tuebine characteristics. The University of Trondheim, The Norwegian Institute of Technology.
  • Calame, J., & Gaden, D. (1926). Théorie des chambres d'équilibre. Etude du mouvement varié de l'eau dans les conduites sous pression munies d'un réservoir à libre expansion. Suivie de renseignements complémentaires pour le calcul des chambres d'équilibre. La Concorde.
  • Escande, L. (1952). Études Théoriques de la stabilité des chambres d'equilibre à étranglement. Comptes Rendus Académie des Sciences, 234(3), 299–301.
  • Escande, L. (1963). The stability of throttled surge tanks operating with the electric power controlled by the hydraulic power. Journal of Hydraulic Research, 1(1), 4–13. doi:10.1080/00221686309500063
  • Guo, W., & Zhu, D. (2020). Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel. Chaos, Solitons & Fractals, 134. doi:10.1016/j.chaos.2020.109698
  • Hanif, C. (2014). Applied Hydraulic Transients. Springer-Verlag.
  • Hanif, C., & Eugen, R. (1971). Surge tank stability by phase plane method. Journal of the Hydraulics Division, ASCE, 97(4), 765–775. doi:10.1061/JYCEAJ.0002931
  • Jaeger, C. (1954). Present trends in surge tank design. Proceedings of the Institution of Mechanical Engineers, 168(1), 91–124. doi:10.1243/PIME_PROC_1954_168_015_02
  • Jaeger, C. (1960). A review of surge-tank stability criteria. Journal of Basic Engineering, 82(4), 765–775. doi:10.1115/1.3662744
  • Nicolet, C. (2007). Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems. EPFL.
  • Nilsen, T. K. (1990). Transient Characteristics of High Head Francis Turbines. Department of Hydro and Gas Dynamics, Norwegian University of Science and Technology.
  • NVF. (2021). Nasjonal Veileder for Funksjonskrav i Kraftverksystemet (National Guide for Functional Requirements in the Power Plant System). Statnett.
  • Pitorac, L., Vereide, K., Lia, L., Cervantes, M. J. (2022). Hydraulic scale modeling of mass oscillations in a pumped storage plant with multiple surge tanks. Journal of Hydraulic Engineering, 148(9). doi:10.1061/(ASCE)HY.1943-7900.0001990
  • Report, I. C. (1973). IEEE transactions on power apparatus and systems: Dynamic models for steam and hydro turbines in power system studies. IEEE, PAS-92(6), 1904–1915. doi:10.1109/TPAS.1973.293570
  • Strah, B., Kuljaca, O., & Vukic, Z. (2005). IEEE transactions on energy conversion: Speed and active power control of hydro turbine unit. IEEE, 20(2), 424–434. doi:10.1109/TEC.2004.837278
  • Supply, W. G. P. M. a. E. (1992). IEEE transactions on power systems: Hydraulic turbine and turbine control models for system dynamic studies. IEEE, 7, 167–179. doi:10.1109/59.141700
  • Svee, R. (1970). Untersuchungen uber die sabilitat bei wasserkraftanlagen mit idealer regelung (Studies on the stability of hydroelectric power plants with ideal control). NTH.
  • Svee, R. (1972, September 6–8). Surge chamber with an enclosed, compressed air-cushion. International Conference on Pressure Surges, Canterbury, England.
  • Svingen, B. (2005, October 13–14). Transient hydraulic simulations using component sub-vis in LabVIEW, SIMS 2005. Scandinavian Conference on Simulation and Modelling, NTNU, Norway.
  • Svingen, B. (2016). LVTrans Manual.
  • Svingen, B. (2022, November 15–18). Waterway stability analysis of hydropower plants using a nonlinear numerical method and FFT with focus on the response of hydraulic power. Pressure Surge Conference 2022, Prague, Czech Republic.
  • Svingen, B., Luraas, H., & Walseth, E. C. (2011, October 26–28). Frequency response measurements and calculations with Water Column Compensation and Pressure Feedback. 4-th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia.
  • Thoma, D. (1910). Zur Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen (On the theory of water closure in independently controlled turbine systems). Walter De Gruyter.
  • Vereide, K., Svingen, B., Nilsen, T., & Lia, L. (2017). The effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. IEEE Transactions on Energy Conversion, 32(1), 91–98. doi:10.1109/TEC.2016.2614829
  • Walseth, E. C., Svingen, B., & Nielsen, T. (2011). Investigating the effect of turbine characteristics on the pressure response of a system. 4-th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia.
  • Wylie, B. (1996, April 16-18). Unsteady internar flows – dimensionless numbers & time constants. In Pressure surges and fluid transients (pp. 283–288). BHR Group.
  • Wylie, B., & Streeter, V. (1993). Fluid transients. McGraw-Hill.
  • Xinxin, L. (1988). Hydropower system modelling by structure matrix method. NTNU.
  • Xinxin, L., & Brekke, H. (1989). Large amplitude water level oscillations in throttled surge tanks. Journal of Hydraulic Research, 27(4), 537–551. doi:10.1080/00221688909499128
  • Yang, J., & Kung, C. S. (1992). Nonlinear stability of differential surge chambers. Journal of Hydraulic Engineering, 118(11), 1526–1539. doi:10.1061/(ASCE)0733-9429(1992)118:11(1526)
  • Yang, J., Kung, C. S., & Cederwall, K. (1992). Large-amplitude oscillations in closed surge chamber. Journal of Hydraulic Research, 30(3), 311–325. doi:10.1080/00221689209498921
  • Zhou, J., Palikhe, S., Cai, F., & Liu, Y. (2020). Experimental and simulation-based investigations on throttle’s head loss coefficients of a surge tank. Energy Science & Engineering, 8(8), 2722–2733. doi:10.1002/ese3.717