199
Views
1
CrossRef citations to date
0
Altmetric
Technical Note

Effect of intake pipe blockage on the critical submergence for lateral dual intakes

ORCID Icon &
Pages 573-582 | Received 13 Feb 2022, Accepted 27 Jun 2023, Published online: 03 Aug 2023

Reference

  • Ahmad, Z., Rao, K. V., & Mittal, M. K. (2008). Critical submergence for horizontal intakes in open channel flows. Dam Engineering, 19(2), 71–90.
  • Anwar, H. O., Weller, J. A., & Amphlett, M. B. (1978). Similarity of free-vortex at horizontal intake. Journal of Hydraulic Research, 16(2), 95–105. https://doi.org/10.1080/00221687809499623.
  • Daggett, L. L., & Keulegan, G. H. (1974). Similitude in free-surface vortex formations. Journal of the Hydraulics Division, 100(11), 1565–1581. doi:10.1061/JYCEAJ.0004105
  • Denny, D. F. (1956). An experimental study of air-entraining vortices in pump sumps. Proceedings of the Institution of Mechanical Engineers, 170(2), 106–125. https://doi.org/10.1243/PIME_PROC_1956_170_019_02.
  • Gogus, M., Koken, M., & Baykara, A. (2016). Formation of air-entraining vortices at horizontal intakes without approach flow induced circulation. Journal of Hydrodynamics, 28(1), 102–113. https://doi.org/10.1016/S1001-6058(16)60612-1.
  • Gordon, J. L. (1970). Vortices at intake structures. Water Power, 22(4), 137–138.
  • Gulliver, J. S., Rindels, A. J., & Lindblom, K. C. (1986). Designing intakes to avoid free-surface vortices. International Water Power & Dam Construction, 38(9), 24–28.
  • Hashid, M., & Ahmad, Z. (2022). Critical submergence for horizontal dual water intakes under perpendicular uniform approach flow. Journal of Hydraulic Engineering, 148(10), 04022020-1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0002016
  • Hashid, M., Hussain, A., & Ahmad, Z. (2021). Critical submergence for side circular intake in an open channel flow. Journal of Hydraulic Research, 59(1), 136-147. https://doi.org/10.1080/00221686.2020.1744749.
  • Jain, A. K., Garde, R. J., & Ranga Raju, K. G. (1978). Vortex formation at vertical pipe intakes. Journal of the Hydraulics Division, 104(10), 1429–1445. https://doi.org/10.1061/JYCEAJ.0005087.
  • Khanarmuei, M., Rahimzadeh, H., & Sarkardeh, H. (2019). Effect of dual intake direction on critical submergence and vortex strength. Journal of Hydraulic Research, 57(2), 272-279. https://doi.org/10.1080/00221686.2018.1459896.
  • Kocabas, F., & Yildirim, N. (2002). Effect of circulation on critical submergence of an intake pipe. Journal of Hydraulic Research, 40(6), 741–752. https://doi.org/10.1080/00221680209499920.
  • Odgaard, A. J. (1986). Free-surface Air core vortex. Journal of Hydraulic Engineering, 112(7), 610–620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610).
  • Padmanabhan, M., & Hecker, G. E. (1984). Scale effects in pump sump models. Journal of Hydraulic Engineering, 110(11), 1540–1556. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1540).
  • Reddy, Y. R., & Pickford, J. A. (1972). Vortices at intakes in conventional sump. Water Power, 24(3), 108–109.
  • Sarkardeh, H., Zarrati, A. R., & Roshan, R. (2010). Effect of intake head wall and trash rack on vortices. Journal of Hydraulic Research, 48(1), 108–112. https://doi.org/10.1080/00221680903565952
  • Suerich-Gulick, F., Gaskin, S. J., Villeneuve, M., & Parkinson, E. (2014). Free surface intake vortices: scale effects due to surface tension and viscosity. Journal of Hydraulic Research, 52(4), 513-522. https://doi.org/10.1080/00221686.2014.905503.
  • Tastan, K. (2016). Critical submergence for isolated and dual rectangular intakes. Sādhanā, 41(4), 425-433. https://doi.org/10.1007/s12046-016-0474-y.
  • Tastan, K., & Yildirim, N. (2010). Effects of dimensionless parameters on air-entraining vortices. Journal of Hydraulic Research, 48(1), 57–64. https://doi.org/10.1080/00221680903566018.
  • Tastan, K., & Yildirim, N. (2014). Effects of Froude, Reynolds and Weber numbers on an air-entraining vortex. Journal of Hydraulic Research, 52(3), 421–425. https://doi.org/10.1080/00221686.2013.879541
  • Werth, D., & Frizzell, C. (2009). Minimum pump submergence to prevent surface vortex formation. Journal of Hydraulic Research, 47(1), 142–144. https://doi.org/10.3826/jhr.2009.2699.
  • Yildirim, N., Akay, H., & Tastan, K. (2011). Critical submergence for multiple pipe intakes by the potential flow solution. Journal of Hydraulic Research, 49(1), 117–121. https://doi.org/10.1080/00221686.2010.535651.
  • Yildirim, N., Eyupoglu, A., & Tastan, K. (2012). Critical submergence for dual rectangular intakes. Journal of Energy Engineering, 138(4), 237–245. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000073.
  • Yildirim, N., & Kocabas, F. (1995). Critical submergence for intakes in open channel flow. Journal of Hydraulic Engineering, 121(12), 900–905. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(900).
  • Yildirim, N., & Tastan, K. (2009). Critical submergence for multiple pipe intakes. Journal of Hydraulic Engineering, 135(12), 1052-1062. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.