876
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Assessment of interfacial turbulence treatment models for free surface flows

, , &
Pages 651-667 | Received 12 Aug 2022, Accepted 05 Aug 2023, Published online: 15 Sep 2023

References

  • ANSYS, F. (2019). ANSYS fluent theory guide 19.1. ANSYS.
  • Bilhan, O., Aydin, M. C., Emiroglu, M. E., & Miller, C. J. (2018). Experimental and CFD Analysis of Circular Labyrinth Weirs. Journal of Irrigation and Drainage Engineering, 144(6), https://doi.org/10.1061/(asce)ir.1943-4774.0001301
  • Bricker, J. D., Takagi, H., & Mitsui, J. (2013). Turbulence Model Effects on VOF Analysis of Breakwater Overtopping during the 2011 Great East Japan Tsunami. The 35th World Congress of the International Association for Hydro-Environment Engineering and Research (IAHR), September 8–13, 2013 Chengdu, Southwestern China.
  • Castillo, L. G., Carrillo, J. M., & Blázquez, A. (2015). Plunge pool dynamic pressures: A temporal analysis in the nappe flow case. Journal of Hydraulic Research, 53(1), https://doi.org/10.1080/00221686.2014.968226
  • Chanson, H. (1996). Air bubble entrainment in free-surface turbulent shear flows. Elsevier. https://doi.org/10.1016/b978-0-12-168110-4.x5000-0
  • Chinnarasri, C., Kositgittiwong, D., & Julien, P. Y. (2014). Model of flow over spillways by computational fluid dynamics. Proceedings of the Institution of Civil Engineers: Water Management, 167(3), https://doi.org/10.1680/wama.12.00034
  • Daly, B. J., & Harlow, F. H. (1970). Transport equations in turbulence. Physics of Fluids, 13(11), https://doi.org/10.1063/1.1692845
  • Devolder, B., Rauwoens, P., & Troch, P. (2017). Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®. Coastal Engineering, 125, https://doi.org/10.1016/j.coastaleng.2017.04.004
  • Devolder, B., Stratigaki, V., Troch, P., & Rauwoens, P. (2018). CFD simulations of floating point absorber wave energy converter arrays subjected to regular waves. Energies, 11(3), https://doi.org/10.3390/en11030641
  • Devolder, B., Troch, P., & Rauwoens, P. (2018). Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®. Coastal Engineering, 138, https://doi.org/10.1016/j.coastaleng.2018.04.011
  • Disanayaka Mudiyanselage, S. (2017). Effect of Nappe Non-aeration on Caisson Sliding Force during Tsunami Breakwater Overtopping.
  • Egorov, Y., Boucker, M., Martin, A., Pigny, S., Scheuerer, M., & Willemsen, S. (2001). Validation of CFD codes with PTS-relevant test cases. 5th Euratom Framework Programme 1998–2002. European Commission, Key action: Nuclear Fission.
  • Fan, W., & Anglart, H. (2019). Progress in phenomenological modeling of turbulence damping around a two-phase interface. Fluids, 4(3), https://doi.org/10.3390/fluids4030136
  • Fan, W., & Anglart, H. (2020). varRhoTurbVOF: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in OpenFOAM. Computer Physics Communications, 247, https://doi.org/10.1016/j.cpc.2019.106876
  • Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J., & Komen, E. M. J. (2018). Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333, https://doi.org/10.1016/j.nucengdes.2018.04.010
  • Haun, S., Olsen, N. R. B., & Feurich, R. (2011). Numerical modeling of flow over trapezoidal broad-crested weir. Engineering Applications of Computational Fluid Mechanics, 5(3), https://doi.org/10.1080/19942060.2011.11015381
  • http://www.openfoam.com. (n.d.). OpenFOAM version 2006.
  • Kamath, A., Fleit, G., & Bihs, H. (2019). Investigation of free surface turbulence damping in RANS simulations for complex free surface flows. Water (Switzerland), 11(3), https://doi.org/10.3390/w11030456
  • Lara, J. L., Higuera, P., Guanche, R., & Losada, I. J. (2013). Wave interaction with piled structures: Application with ih-foam. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 7. https://doi.org/10.1115/OMAE2013-11479
  • Larsen, B. E., & Fuhrman, D. R. (2018). On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier-Stokes models. Journal of Fluid Mechanics, 853, https://doi.org/10.1017/jfm.2018.577
  • Li, M., Xie, L., Zong, X., Zhang, S., Zhou, L., & Li, J. (2018). The cruise observation of turbulent mixing in the upwelling region east of Hainan Island in the summer of 2012. Acta Oceanologica Sinica, 37(9), 1–12. https://doi.org/10.1007/s13131-018-1260-y
  • Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), https://doi.org/10.1029/RG020i004p00851
  • Nakayama, A., & Yokojima, S. (2003). Modeling free-surface fluctuation effects for calculation of turbulent open-channel flows. Environmental Fluid Mechanics, 3(1), https://doi.org/10.1023/A:1021136912983
  • Patil, A., Mudiyanselage, S. D., Bricker, J. D., Uijttewaal, W., & Keetels, G. (2018). Effect OF OVERFLOW NAPPE NON-AERATION ON TSUNAMI BREAKWATER FAILURE. Coastal Engineering Proceedings, 36, https://doi.org/10.9753/icce.v36.papers.18
  • Van Maele, K., & Merci, B. (2006). Application of two buoyancy-modified k-ε turbulence models to different types of buoyant plumes. Fire Safety Journal, 41(2), https://doi.org/10.1016/j.firesaf.2005.11.003
  • Watanabe, T., & Ebihara, K. (2001, April). Parallel computation of rising bubbles using the lattice Boltzmann method on workstation cluster. In Parallel Computational Fluid Dynamics: Trends and Applications: Proceedings of the Parallel CFD 2000 Conference (p. 399). North-Holland.
  • Yan, Z., & Holmstedt, G. (1999). A two-equation turbulence model and its application to a buoyant diffusion flame. International Journal of Heat and Mass Transfer, 42(7), https://doi.org/10.1016/S0017-9310(98)00206-3
  • Zou, P., Bricker, J. D., & Uijttewaal, W. (2021a). Submerged floating tunnel cross-section analysis using a transition turbulence model. Journal of Hydraulic Research, https://doi.org/10.1080/00221686.2021.1944921
  • Zou, P., Bricker, J., & Uijttewaal, W. (2020a). Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation - genetic algorithm. Marine Structures, 74, https://doi.org/10.1016/j.marstruc.2020.102807
  • Zou, P. X., Bricker, J. D., Chen, L. Z., Uijttewaal, W. S. J., & Simao Ferreira, C. (2022). Response of a submerged floating tunnel subject to flow-induced vibration. Engineering Structures, 253, https://doi.org/10.1016/j.engstruct.2021.113809
  • Zou, P. X., Bricker, J. D., & Uijttewaal, W. S. J. (2020b). Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel. Ocean Engineering, 218, https://doi.org/10.1016/j.oceaneng.2020.108221
  • Zou, P. X., Bricker, J. D., & Uijttewaal, W. S. J. (2021b). The impacts of internal solitary waves on a submerged floating tunnel. Ocean Engineering, 238, 109762. doi:10.1016/j.oceaneng.2021.109762
  • Zou, P. X., Ruiter, N., Bricker, J. D., & Uijttewaal, W. S. J. (2023). Effects of roughness on hydrodynamic characteristics of a submerged floating tunnel subject to steady currents. Marine Structures, 89, 103405. https://doi.org/10.1016/j.marstruc.2023.103405