206
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Experimental investigation of the hydrodynamic field around a half-cone woody debris jam on a bridge pier

, &
Pages 866-879 | Received 07 Mar 2023, Accepted 10 Sep 2023, Published online: 06 Nov 2023

References

  • Cantero-Chinchilla, F. N., Almeida, G. A. M. d., & Manes, C. (2021). Temporal evolution of clear-water local scour at bridge piers with flow-dependent debris accumulations. Journal of Hydraulic Engineering, 147(10), 06021013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001920
  • Carnacina, I., Lescova, A., & Pagliara, S. (2020). A Methodology to Measure Flow Fields at Bridge Piers in the Presence of Large Wood Debris Accumulation Using Acoustic Doppler Velocimeters. In R. AlKhaddar, R. K. Singh, S. Dutta, & M. Kumari (Eds.), Advances in Water Resources Engineering and Management: Select Proceedings of TRACE 2018 (pp. 17–25). Springer Singapore.
  • Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids, 8(1), 1–12. https://doi.org/10.1007/BF00203058
  • Ebrahimi, M., Kripakaran, P., Prodanović, D. M., Kahraman, R., Riella, M., Tabor, G., Arthur, S., & Djordjević, S. (2018). Experimental study on scour at a sharp-nose bridge pier with debris blockage. Journal of Hydraulic Engineering, 144(12), 04018071. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001516
  • Ettema, R., Kirkil, G., & Muste, M. (2006). Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering, 132(1), 33–40. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33)
  • Graf, W. H., & Istiarto, I. (2002). Flow pattern in the scour hole around a cylinder. Journal of Hydraulic Research, 40(1), 13–20. https://doi.org/10.1080/00221680209499869
  • Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637–654. https://doi.org/10.1080/00221689809498613
  • Hager, W. H. (2007). Scour in hydraulic engineering. Proceedings of the Institution of Civil Engineers - Water Management, 160(3), 159–168. https://doi.org/10.1680/wama.2007.160.3.159
  • Jamieson, E. C., Post, G., & Rennie, C. D. (2010). Spatial variability of three-dimensional Reynolds stresses in a developing channel bend. Earth Surface Processes and Landforms, 35(9), 1029–1043.
  • Jamieson, E. C., Rennie, C. D., & Townsend, R. D. (2013). Turbulence and vorticity in a laboratory channel bend at equilibrium clear-water scour with and without stream barbs. Journal of Hydraulic Engineering, 139(3), 259–268. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000673
  • Kirkil, G., & Constantinescu, G. (2012). A numerical study of the laminar necklace vortex system and its effect on the wake for a circular cylinder. Physics Of Fluids, 24(7), 073602. https://doi.org/10.1063/1.4731291
  • Kirkil, G., & Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Physics Of Fluids, 27(7), 075102. https://doi.org/10.1063/1.4923063
  • Kirkil, G., Constantinescu, S. G., & Ettema, R. (2008). Coherent structures in the flow field around a circular cylinder with scour hole. Journal of Hydraulic Engineering, 134(5), 572–587. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(572)
  • Lagasse, P. F., Clopper, P. E., Zevenbergen, L. W., Spitz, W. J., & Girard, L. G. (2010). Effects of debris on bridge pier scour (0309118344).
  • Mauti, G., Stolle, J., Takabatake, T., Nistor, I., Goseberg, N., & Mohammadian, A. (2020). Experimental investigation of loading due to debris dams on structures. Journal of Hydraulic Engineering, 146(5), 04020029. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001731
  • Melville, B. W., & Dongol, D. M. (1992). Bridge pier scour with debris accumulation. Journal of Hydraulic Engineering, 118(9), 1306–1310. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:9(1306)
  • Michálek, P., Procházka, P., Uruba, V., & Pospíšil, S. (2022). Influence of surface roughness on the wake structure of a circular cylinder at Reynolds number 5 × 103 to 12 × 103. European Journal of Mechanics - B/Fluids, 96, 15–25. https://doi.org/10.1016/j.euromechflu.2022.06.003
  • Okamoto, T.-a., Tanaka, K., Matsumoto, K., & Someya, T. (2021). Influence of velocity field on driftwood accumulation at a bridge with a single pier. Environmental Fluid Mechanics, 21, 693–711. https://doi.org/10.1007/s10652-021-09793-7
  • Pagliara, S., & Carnacina, I. (2010). Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity. Journal of Hydraulic Research, 48(1), 3–13. https://doi.org/10.1080/00221680903568592
  • Pagliara, S., & Carnacina, I. (2013). Bridge pier flow field in the presence of debris accumulation. Proceedings of the Institution of Civil Engineers - Water Management, 166(4), 187–198. https://doi.org/10.1680/wama.11.00060
  • Panici, D., & de Almeida, G. A. M. (2018). Formation, growth, and failure of debris jams at bridge piers. Water Resources Research, 54(9), 6226–6241. https://doi.org/10.1029/2017WR022177
  • Panici, D., & de Almeida, G. A. M. (2020). A theoretical analysis of the fluid–solid interactions governing the removal of woody debris jams from cylindrical bridge piers. Journal of Fluid Mechanics, 886, A19, Article A19. https://doi.org/10.1017/jfm.2019.1048
  • Sreelash, K., & Mudgal, B. V. (2010). Drag Characteristics of Cylindrical piers with slots and/or collars in subcritical flow. ISH Journal of Hydraulic Engineering, 16(2), 75–87. https://doi.org/10.1080/09715010.2010.10515003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.