170
Views
1
CrossRef citations to date
0
Altmetric
Research paper

Investigation of asymmetric gravity current collision with LES

ORCID Icon & ORCID Icon
Pages 893-909 | Received 14 Nov 2022, Accepted 29 Sep 2023, Published online: 13 Nov 2023

References

  • Bardoel, S. L., Horna Muñoz, D. V., Grachev, A. A., Krishnamurthy, R., Chamorro, L. P., & Fernando, H. J. S. (2021). Fog formation related to gravity currents interacting with coastal topography. Boundary-Layer Meteorology, 181(2–3), 499–521. https://doi.org/10.1007/s10546-021-00638-w
  • Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209–248. https://doi.org/10.1017/S0022112068000133
  • Borden, Z., & Meiburg, E. (2013). Circulation based models for Boussinesq gravity currents. Physics of Fluids, 25(10). https://doi.org/10.1063/1.4825035
  • Cantero, M. I., Balachandar, S., García, M. H., & Bock, D. (2008). Turbulent structures in planar gravity currents and their influence on the flow dynamics. Journal of Geophysical Research, 113(8), 1–22. https://doi.org/10.1029/2007JC004645
  • Constantinescu, G. (2014). LES of lock-exchange compositional gravity currents: A brief review of some recent results. Environmental Fluid Mechanics, 14(2), 295–317. https://doi.org/10.1007/s10652-013-9289-0
  • De Falco, M. C., Adduce, C., & Maggi, M. R. (2021). Gravity currents interacting with a bottom triangular obstacle and implications on entrainment. Advances in Water Resources, 154, 103967. https://doi.org/10.1016/j.advwatres.2021.103967
  • De Falco, M. C., Adduce, C., Negretti, M. E., & Hopfinger, E. J. (2021). On the dynamics of quasi-steady gravity currents flowing up a slope. Advances in Water Resources, 147, 103791. https://doi.org/10.1016/j.advwatres.2020.103791
  • Droegemeier, K. K., & Wilhelmson, R. B. (1985). Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: control simulation and low-level moisture variations. Journal of the Atmospheric Sciences, 42(22), 2381–2403. https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2
  • Fragoso, A. T., Patterson, M. D., & Wettlaufer, J. S. (2013). Mixing in gravity currents. Journal of Fluid Mechanics, 734, 1–10. https://doi.org/10.1017/jfm.2013.475
  • Frantz, R. A. S., Deskos, G., Laizet, S., & Silvestrini, J. H. (2021). High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach. Computers & Fluids, 221, 104902. https://doi.org/10.1016/j.compfluid.2021.104902
  • Härtel, C., Meiburg, E., & Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics, 418, 189–212. https://doi.org/10.1017/S0022112000001221
  • He, Z., Zhao, L., Hu, P., Yu, C., & Lin, Y. T. (2018). Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Advances in Water Resources, 119, 164–177. https://doi.org/10.1016/j.advwatres.2018.07.008
  • He, Z., Zhao, L., Lin, T., Hu, P., lv, Y., Ho, H.-C., & Lin, Y.-T. (2017). Hydrodynamics of gravity currents down a ramp in linearly stratified environments. Journal of Hydraulic Engineering, 143(3), 04016085. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001242
  • Intrieri, J. M., Bedard, A. J., & Hardesty, R. M. (1990). Details of colliding thunderstorm outflows as observed by Doppler Lidar. Journal of the Atmospheric Sciences, 47(9), 1081–1099. https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2
  • Kingsmill, D. E., & Crook, N. A. (2003). An observational study of atmospheric bore formation from colliding density currents. Monthly Weather Review, 131(12). https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2
  • Kokkinos, A., & Prinos, P. (2022). Numerical experiments of partial-depth colliding gravity currents using LES. Environmental Fluid Mechanics, 22(5), 1081–1105. https://doi.org/10.1007/s10652-022-09879-w
  • Komen, E. M. J., Camilo, L. H., Shams, A., Geurts, B. J., & Koren, B. (2017). A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows. Journal of Computational Physics, 345, 565–595. https://doi.org/10.1016/j.jcp.2017.05.030
  • Lapworth, A. (2005). Collision of two sea-breeze fronts observed in Wales. Weather, 60(11), 316–318.https://doi.org/10.1256/wea.92.05
  • Lombardi, V., Adduce, C., Sciortino, G., & La Rocca, M. (2015). Gravity currents flowing upslope: Laboratory experiments and shallow-water simulations. Physics of Fluids, 27(1), 16602. https://doi.org/10.1063/1.4905305
  • Maggi, M. R., Adduce, C., & Negretti, M. E. (2022). Lock-release gravity currents propagating over roughness elements. Environmental Fluid Mechanics, 22(2–3), 383–402. https://doi.org/10.1007/s10652-022-09845-6
  • Mahoney, W. P. (1988). Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Monthly Weather Review, 116(7), 1474–1492. https://doi.org/10.1175/1520-0493(1988)116<1474:gfcatk>2.0.co;2
  • Mangia, C., Schipa, I., Tanzarella, A., Conte, D., Marra, G. P., Miglietta, M. M., & Rizza, U. (2010). A numerical study of the effect of sea breeze circulation on photochemical pollution over a highly industrialized peninsula. Meteorological Applications, 17(1), 19–31. https://doi.org/10.1002/met.147
  • Marino, B. M., Thomas, L. P., & Linden, P. F. (2005). The front condition for gravity currents. Journal of Fluid Mechanics, 536, 49–78. https://doi.org/10.1017/S0022112005004933
  • Marmorino, G. O., Shen, C. Y., Allan, N., Askari, F., Trizna, D. B., Trump, C. L., & Shay, L. K. (1998). An occluded coastal oceanic front. Journal of Geophysical Research: Oceans, 103(C10), 21587–21600. https://doi.org/10.1029/98JC02099
  • Maxworthy, T., Leilich, J., Simpson, J. E., & Meiburg, E. H. (2002). The propagation of a gravity current into a linearly stratified fluid. Journal of Fluid Mechanics, 453, 371–394. https://doi.org/10.1017/S0022112001007054
  • Meiburg, E., Radhakrishnan, S., & Nasr-Azadani, M. (2015). Modeling gravity and turbidity currents: Computational approaches and challenges. Applied Mechanics Reviews, 67(4), 1–23. https://doi.org/10.1115/1.4031040
  • Necker, F., Härtel, C., Kleiser, L., & Meiburg, E. (2005). Mixing and dissipation in particle-driven gravity currents. Journal of Fluid Mechanics, 545(-1), 339. https://doi.org/10.1017/S0022112005006932
  • Negretti, M. E., Tucciarone, F. L., & Wirth, A. (2021). Intruding gravity currents and re-circulation in a rotating frame: Laboratory experiments. Physics of Fluids, 33(9). https://doi.org/10.1063/5.0058629
  • Nogueira, H. I., Adduce, C., Alves, E., & Franca, M. J. (2013). Analysis of lock-exchange gravity currents over smooth and rough beds. Journal of Hydraulic Research, 51(4), 417–431. https://doi.org/10.1080/00221686.2013.798363
  • O’Donnell, J., Marmorino, G. O., & Trump, C. L. (1998). Convergence and downwelling at a river plume front. Journal of Physical Oceanography, 28(7), 1481–1495. https://doi.org/10.1175/1520-0485(1998)028<1481:CADAAR>2.0.CO;2
  • Okon, S. U., Zhong, Q., & He, Z. (2021). Experimental study on the vertical motion of colliding gravity currents. Physics of Fluids, 33(1). https://doi.org/10.1063/5.0031738
  • Ooi, S. K., Constantinescu, G., & Weber, L. (2009). Numerical simulations of lock-exchange compositional gravity current. Journal of Fluid Mechanics, 635, 361–388. https://doi.org/10.1017/S0022112009007599
  • OpenCFD. (2019). OpenFOAM – the open source CFD toolbox – user’s guide v1906.
  • Ottolenghi, L., Adduce, C., Inghilesi, R., Armenio, V., & Roman, F. (2016). Entrainment and mixing in unsteady gravity currents. Journal of Hydraulic Research, 54(5), 541–557. https://doi.org/10.1080/00221686.2016.1174961
  • Ottolenghi, L., Adduce, C., Roman, F., & Armenio, V. (2017). Analysis of the flow in gravity currents propagating up a slope. Ocean Modelling, 115, 1–13. https://doi.org/10.1016/j.ocemod.2017.05.001
  • Özgökmen, T. M., Iliescu, T., & Fischer, P. F. (2009). Large eddy simulation of stratified mixing in a three-dimensional lock-exchange system. Ocean Modelling, 26(3–4), 134–155. https://doi.org/10.1016/j.ocemod.2008.09.006
  • Pelmard, J., Norris, S., & Friedrich, H. (2020). Statistical characterisation of turbulence for an unsteady gravity current. Journal of Fluid Mechanics, 901. https://doi.org/10.1017/jfm.2020.528
  • Rottman, J. W., & Simpson, J. E. (1983). Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. Journal of Fluid Mechanics, 135(-1), 95–110. https://doi.org/10.1017/S0022112083002979
  • Rottman, J. W., Simpson, J. E., Hunt, J. C. R., & Britter, R. E. (1985). Unsteady gravity current flows over obstacles: Some observations and analysis related to the phase II trials. Journal of Hazardous Materials, 11(C), 325–340. https://doi.org/10.1016/0304-3894(85)85044-5
  • Sher, D., & Woods, A. W. (2015). Gravity currents: Entrainment, stratification and self-similarity. Journal of Fluid Mechanics, 784, 130–162. https://doi.org/10.1017/jfm.2015.576
  • Shin, J. (2001). Colliding gravity currents. University of Cambridge: Cambridge, United Kingdom, June, 182.
  • Shin, J. O., Dalziel, S. B., & Linden, P. F. (1999). Gravity currents produced by lock exchange. Journal of Fluid Mechanics, 521(1968), 1–34. https://doi.org/10.1017/S002211200400165X
  • Simpson, J. E. (1997). Gravity currents: In the environment and the laboratory (2nd ed.). Cambridge University Press (CUP).
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations I. The Basic Experiment. Monthly Weather Review, 91(3), 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Stancanelli, L. M., Musumeci, R. E., & Foti, E. (2018). Dynamics of gravity currents in the presence of surface waves. Journal of Geophysical Research: Oceans, 123(3), 2254–2273. https://doi.org/10.1002/2017JC013273
  • Tokyay, T., & Constantinescu, G. (2015). The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Physics of Fluids, 27(5), 056601. https://doi.org/10.1063/1.4919384
  • Tokyay, T., Constantinescu, G., & Meiburg, E. (2014). Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles. Journal of Geophysical Research: Oceans, 119(5), 2752–2768. https://doi.org/10.1002/2013JC009721
  • Torri, G., & Kuang, Z. (2019). On cold pool collisions in tropical boundary layers. Geophysical Research Letters, 46(1), 399–407. https://doi.org/10.1029/2018GL080501
  • Tseng, Y. H., & Ferziger, J. H. (2001). Mixing and available potential energy in stratified flows. Physics of Fluids, 13(5), 1281–1293. https://doi.org/10.1063/1.1358307
  • van der Wiel, K., Gille, S. T., Llewellyn Smith, S. G., Linden, P. F., & Cenedese, C. (2017). Characteristics of colliding sea breeze gravity current fronts: a laboratory study. Quarterly Journal of the Royal Meteorological Society, 143(704), 1434–1441. https://doi.org/10.1002/qj.3015
  • Viviano, A., Musumeci, R. E., & Foti, E. (2018). Interaction between waves and gravity currents: description of turbulence in a simple numerical model. Environmental Fluid Mechanics, 18(1), 117–148. https://doi.org/10.1007/s10652-017-9527-y
  • Wakimoto, R. M., & Kingsmill, D. E. (1995). Structure of an atmospheric undular bore generated from colliding boundaries during CaPE. Monthly Weather Review, 123(5), 1374–1393. https://doi.org/10.1175/1520-0493(1995)123<1374:soaaub>2.0.co;2
  • Warrick, J. A., & Farnsworth, K. L. (2017). Coastal river plumes: Collisions and coalescence. Progress in Oceanography, 151, 245–260. https://doi.org/10.1016/j.pocean.2016.11.008
  • Winters, K. B., Lombard, P. N., Riley, J. J., & D’Asaro, E. A. (1995). Available potential energy and mixing in density-stratified fluids. Journal of Fluid Mechanics, 289(C5), 115–128. https://doi.org/10.1017/S002211209500125X
  • Zhong, Q., Hussain, F., & Fernando, H. J. S. (2018). Quantification of turbulent mixing in colliding gravity currents. Journal of Fluid Mechanics, 851, 125–147. https://doi.org/10.1017/jfm.2018.488
  • Zhu, R., He, Z., & Meiburg, E. (2021). Removal of a dense bottom layer by a gravity current. Journal of Fluid Mechanics, 916, 30. https://doi.org/10.1017/jfm.2021.234

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.