10
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Swimming behaviour of downstream migrating carp in accelerating flows

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 253-266 | Received 28 Jul 2023, Accepted 03 Apr 2024, Published online: 13 Jun 2024

References

  • Algera, D. A., Rytwinski, T., Taylor, J. J., Bennett, J. R., Smokorowski, K. E., Harrison, P. M., Clarke, K. D., Enders, E. C., Power, M., Bevelhimer, M. S., & Cooke, S. J. (2020). What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review. Environmental Evidence, 9(1), 1–36. https://doi.org/10.1186/s13750-020-0184-0
  • An, R.-d., Li, J., Yi, W.-m., & Mao, X. (2019). Hydraulics and swimming behavior of schizothorax prenanti in vertical slot fishways. Journal of Hydrodynamics, 31(1), 169–176. https://doi.org/10.1007/s42241-019-0009-1
  • Batty, R. S., & Domenici, P. (2021). Predator–prey relationships in fish and other aquatic vertebrates: Kinematics and behaviour. In P. D. Domenici & R. W. Blake (Eds.), Biomechanics in animal behaviour (pp. 237–257). Garland Science.
  • Cao, P., Mu, X., Baiyin, B., Wang, X., & Chen, Y. (2017). Study on swimming behavior of juvenile grass carp for the fish channel hydraulic design. Journal of Hydraulic Engineering, 48, 1456–1464. https://doi.org/10.13243/j.cnki.slxb.20170758
  • Cooke, S., Cech, J., Glassman, D., Simard, J., Louttit, S., Lennox, R., Cruz-Font, L., & O’Connor, C. M. (2020). Water resource development and sturgeon (Acipenseridae): State of the science and research gaps related to fish passage, entrainment, impingement and behavioural guidance. Reviews in Fish Biology and Fisheries, 30(2), 219–244. https://doi.org/10.1007/s11160-020-09596-x
  • Coutant, C. C., & Whitney, R. R. (2000). Fish behavior in relation to passage through hydropower turbines: A review. Transactions of the American Fisheries Society, 129(2), 351–380. https://doi.org/10.1577/1548-8659(2000)129<0351:FBIRTP>2.0.CO;2
  • Čada, G. F. (2001). The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries, 26(9), 14–23. https://doi.org/10.1577/1548-8446(2001)026<0014:TDOAHT>2.0.CO;2
  • Duponchelle, F., Isaac, V. J., Rodrigues Da Costa Doria, C., Van Damme, P. A., Herrera-r, G. A., Anderson, E. P., Cruz, R. E. A., Hauser, M., Hermann, T. W., Agudelo, E., Bonilla-Castillo, C., Barthem, R., Freitas, C. E. C., García-Dávila, C., García-Vasquez, A., Renno, J., & Castello, L. (2021). Conservation of migratory fishes in the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 1087–1105. https://doi.org/10.1002/aqc.3550
  • Enders, E. C., Gessel, M. H., Anderson, J. J., & Williams, J. G. (2012). Effects of decelerating and accelerating flows on juvenile salmonid behavior. Transactions of the American Fisheries Society, 141(2), 357–364. https://doi.org/10.1080/00028487.2012.664604
  • Enders, E. C., Gessel, M. H., & Williams, J. G. (2009). Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow. Canadian Journal of Fisheries and Aquatic Sciences, 66(12), 2109–2117. https://doi.org/10.1139/F09-141
  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85(1), 97–177. https://doi.org/10.1152/physrev.00050.2003
  • Fang, M. (2014). Swimming capability of several cyprinid and assessment of vertical slot fishways based on simulation.
  • Faulkner, J. R., Bellerud, B. L., Widener, D. L., & Zabel, R. W. (2019). Associations among fish length, dam passage history, and survival to adulthood in two at-risk species of Pacific salmon. Transactions of the American Fisheries Society, 148(6), 1069–1087. https://doi.org/10.1002/tafs.10200
  • Fernandes, M. N., da Cruz, A. L., da Costa, O. T. F., & Perry, S. F. (2012). Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas. Micron, 43(9), 961–970. https://doi.org/10.1016/j.micron.2012.03.018
  • Foldvik, A., Silva, A. T., Albayrak, I., Schwarzwälder, K., Boes, R. M., & Ruther, N. (2022). Combining fish passage and sediment bypassing: A conceptual solution for increased sustainability of dams and reservoirs. Water, 14(12), 1977. https://doi.org/10.3390/w14121977
  • Gerasimov, Y. V., Borisenko, E., Bazarov, M., Stolbunov, I., & Tsvetkov, A. (2019). Fish distribution in the middle course of a large lowland river under the effect of hydrophysical factors. Inland Water Biology, 12(1), 74–82. https://doi.org/10.1134/S1995082919010085
  • Goodwin, R. A., Politano, M., Garvin, J. W., Nestler, J. M., Hay, D., Anderson, J. J., Weber, L. J., Dimperio, E., Smith, D. L., & Timko, M. (2014). Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the National Academy of Sciences, 111(14), 5277–5282. https://doi.org/10.1073/pnas.1311874111
  • Haro, A., Odeh, M., Noreika, J., & Castro-Santos, T. (1998). Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. Transactions of the American Fisheries Society, 127(1), 118–127. https://doi.org/10.1577/1548-8659(1998)127<0118:EOWAOD>2.0.CO;2
  • Harrison, P. M., Martins, E. G., Algera, D. A., Rytwinski, T., Mossop, B., Leake, A. J., & Cooke, S. J. (2019). Turbine entrainment and passage of potadromous fish through hydropower dams: Developing conceptual frameworks and metrics for moving beyond turbine passage mortality. Fish and Fisheries, 20(3), 403–418. https://doi.org/10.1111/faf.12349
  • Higham, T. E., Stewart, W. J., & Wainwright, P. C. (2015). Turbulence, temperature, and turbidity: The ecomechanics of predator–prey interactions in fishes. Integrative and Comparative Biology, 55(1), 6–20. https://doi.org/10.1093/icb/icv052
  • Jiang, Y., Ma, Z., & Zhang, D. (2019). Flow field perception based on the fish lateral line system. Bioinspiration & Biomimetics, 14(4), 041001. https://doi.org/10.1088/1748-3190/ab1a8d
  • Keefer, M. L., Jepson, M. A., Clabough, T. S., & Caudill, C. C. (2021). Technical fishway passage structures provide high passage efficiency and effective passage for adult Pacific salmonids at eight large dams. PLoS One, 16(9), e0256805. https://doi.org/10.1371/journal.pone.0256805
  • Kemp, P. S., Anderson, J. J., & Vowles, A. S. (2012). Quantifying behaviour of migratory fish: Application of signal detection theory to fisheries engineering. Ecological Engineering, 41, 22–31. https://doi.org/10.1016/j.ecoleng.2011.12.013
  • Kemp, P. S., Gessel, M. H., & Williams, J. G. (2005). Fine-scale behavioral responses of Pacific salmonid smolts as they encounter divergence and acceleration of flow. Transactions of the American Fisheries Society, 134(2), 390–398. https://doi.org/10.1577/T04-039.1
  • Khan, L. A. (2006). A three-dimensional computational fluid dynamics (CFD) model analysis of free surface hydrodynamics and fish passage energetics in a vertical-slot fishway. North American Journal of Fisheries Management, 26(2), 255–267. https://doi.org/10.1577/M05-014.1
  • Kucukali, S., Verep, B., & Albayrak, I. (2022). Hydrodynamic characteristics of diagonal brush fish pass: Prototype measurements. Water, 15(1), 88. https://doi.org/10.3390/w15010088
  • Li, H., Zhao, W., Tang, X., Li, Q., Guo, W., & Gong, D. (2018). Entrainment effects of a small-scale diversion-type hydropower station on phytoplankton. Ecological Engineering, 116, 45–51. https://doi.org/10.1016/j.ecoleng.2018.02.030
  • Li, M., Shi, X., Jin, Z., Ke, S., Lin, C., An, R., Li, J., & Katopodis, C. (2021). Behaviour and ability of a cyprinid (Schizopygopsis younghusbandi) to cope with accelerating flows when migrating downstream. River Research and Applications, 37(8), 1168–1179. https://doi.org/10.1002/rra.3686
  • Li, P., Zhang, W., Burnett, N. J., Zhu, D. Z., Casselman, M., & Hinch, S. G. (2021). Evaluating dam water release strategies for migrating adult salmon using computational fluid dynamic modeling and biotelemetry. Water Resources Research, 57(8), e2020WR028981. https://doi.org/10.1029/2020WR028981
  • Li, Y., Liao, Y., Dong, X., Xian, H., & Kattel, G. (2022). Hydrological disconnection from the Yangtze River triggered rapid environmental degradation in a riverine lake. Limnologica, 95, 125993. https://doi.org/10.1016/j.limno.2022.125993
  • Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 1973–1993. https://doi.org/10.1098/rstb.2007.2082
  • Liao, J. C. (2022). Fish swimming efficiency. Current Biology, 32(12), R666–R671. https://doi.org/10.1016/j.cub.2022.04.073
  • Liao, J. C., & Cotel, A. (2012). Effects of turbulence on fish swimming in aquaculture. In A. P. Palstra & J. V. Planas (Eds.), Swimming physiology of fish: Towards using exercise to farm a fit fish in sustainable aquaculture (pp. 109–127). Springer.
  • Lin, H.-Y., Martins, E. G., Power, M., Crossman, J. A., Leake, A. J., & Cooke, S. J. (2022). An assessment tool for estimating effects of entrainment at hydropower facilities on adfluvial fish populations. Environment Systems and Decisions, 42(4), 556–571. https://doi.org/10.1007/s10669-022-09858-y
  • Mawer, R., Pauwels, I. S., Bruneel, S. P., Goethals, P. L., Kopecki, I., Elings, J., Coeck, J., & Schneider, M. (2023). Individual based models for the simulation of fish movement near barriers: Current work and future directions. Journal of Environmental Management, 335, 117538. https://doi.org/10.1016/j.jenvman.2023.117538
  • Mochek, A., & Pavlov, D. (2021). Comparative analysis of fish distribution in lentic and lotic ecosystems. Inland Water Biology, 14(2), 196–204. https://doi.org/10.1134/S1995082921020103
  • Muhawenimana, V., Wilson, C., Ouro, P., & Cable, J. (2019). Spanwise cylinder wake hydrodynamics and fish behavior. Water Resources Research, 55(11), 8569–8582. https://doi.org/10.1029/2018WR024217
  • Ohlberger, J., Staaks, G., & Hölker, F. (2007). Estimating the active metabolic rate (AMR) in fish based on tail beat frequency (TBF) and body mass. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 307(5), 296–300. https://doi.org/10.1002/jez.384
  • Pracheil, B. M., DeRolph, C. R., Schramm, M. P., & Bevelhimer, M. S. (2016). A fish-eye view of riverine hydropower systems: The current understanding of the biological response to turbine passage. Reviews in Fish Biology and Fisheries, 26(2), 153–167. https://doi.org/10.1007/s11160-015-9416-8
  • Schilt, C. R. (2007). Developing fish passage and protection at hydropower dams. Applied Animal Behaviour Science, 104(3–4), 295–325. https://doi.org/10.1016/j.applanim.2006.09.004
  • Shirinzad, A., Kumahor, S., Tachie, M., Ghamry, H., & Katopodis, C. (2023). Investigation of turbulent flows using spillway models aiming to aid downstream migration of fish. River Research and Applications, 39(6), 1110–1121. https://doi.org/10.1002/rra.4132
  • Silva, A. T., Bærum, K. M., Hedger, R. D., Baktoft, H., Fjeldstad, H.-P., Gjelland, KØ, Økland, F., & Forseth, T. (2020). The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of the Total Environment, 705, 135773. https://doi.org/10.1016/j.scitotenv.2019.135773
  • Tan, J., Gao, Z., Dai, H., Yang, Z., & Shi, X. (2019). Effects of turbulence and velocity on the movement behaviour of bighead carp (Hypophthalmichthys nobilis) in an experimental vertical slot fishway. Ecological Engineering, 127, 363–374. https://doi.org/10.1016/j.ecoleng.2018.12.002
  • Tudorache, C., O’Keefe, R. A., & Benfey, T. J. (2011). Optimal swimming speeds reflect preferred swimming speeds of brook charr (Salvelinus fontinalis Mitchill, 1874). Fish Physiology and Biochemistry, 37(2), 307–315. https://doi.org/10.1007/s10695-011-9498-8
  • Tuononen, E. I., Cooke, S. J., Timusk, E. R., & Smokorowski, K. E. (2022). Extent of injury and mortality arising from entrainment of fish through a very low head hydropower turbine in central Ontario, Canada. Hydrobiologia, 849(2), 407–420. https://doi.org/10.1007/s10750-020-04376-x
  • Tyagi, A., & Sen, D. (2006). Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach. Ocean Engineering, 33(5-6), 798–809. https://doi.org/10.1016/j.oceaneng.2005.06.004
  • Voesenek, C. J., Muijres, F. T., & Van Leeuwen, J. L. (2018). Biomechanics of swimming in developing larval fish. Journal of Experimental Biology, 221(1), jeb149583. https://doi.org/10.1242/jeb.149583
  • Vowles, A. S., Anderson, J. J., Gessel, M. H., Williams, J. G., & Kemp, P. S. (2014). Effects of avoidance behaviour on downstream fish passage through areas of accelerating flow when light and dark. Animal Behaviour, 92, 101–109. https://doi.org/10.1016/j.anbehav.2014.03.006
  • Vowles, A. S., & Kemp, P. S. (2012). Effects of light on the behaviour of brown trout (Salmo trutta) encountering accelerating flow: Application to downstream fish passage. Ecological Engineering, 47, 247–253. https://doi.org/10.1016/j.ecoleng.2012.06.021
  • Wang, L., WANG, Y., & LIN, C. (2019). Effect of accelerating flow on downstream migration behaviors of juvenile grass carps of different body lengths. Journal of Hydroelectric Engineering, 38(12), 40–48. https://doi.org/10.11660/slfdxb.20191205
  • Weber, L. J., Goodwin, R. A., Li, S., Nestler, J. M., & Anderson, J. J. (2006). Application of an Eulerian–Lagrangian–Agent method (ELAM) to rank alternative designs of a juvenile fish passage facility. Journal of Hydroinformatics, 8(4), 271–295. https://doi.org/10.2166/hydro.2006.006
  • White, C. H., Lauder, G. V., & Bart-Smith, H. (2021). Tunabot flex: A tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspiration & Biomimetics, 16(2), 026019. https://doi.org/10.1088/1748-3190/abb86d
  • Williams, J. G., Armstrong, G., Katopodis, C., Larinier, M., & Travade, F. (2012). Thinking like a fish: A key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications, 28(4), 407–417. https://doi.org/10.1002/rra.1551
  • Wu, Q., Zeng, L., Cao, Z., Peng, J., & Fu, S. (2015). The preferred water velocity behavior of six cyprinids with different feeding habits. Journal of Fisheries of China, 39(12), 1807–1816. https://doi.org/10.11964/jfc.20150409804
  • Xue, B., Zhao, Y., Bi, C., Cheng, Y., Ren, X., & Liu, Y. (2022). Investigation of flow field and pollutant particle distribution in the aquaculture tank for fish farming based on computational fluid dynamics. Computers and Electronics in Agriculture, 200, 107243. https://doi.org/10.1016/j.compag.2022.107243
  • Yao, W., Zhu, D. Z., Langford, M. T., Crossman, J. A., Li, P., Leake, A., & Parkinson, E. (2023). Combining hydro-acoustics and hydraulic modeling for evaluating fish entrainment risk. Ecological Engineering, 194, 107022. https://doi.org/10.1016/j.ecoleng.2023.107022
  • Zha, W., Zeng, Y., Katul, G., Li, Q., Liu, X., & Chen, X. (2021). Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies. Science of the Total Environment, 799, 149403. https://doi.org/10.1016/j.scitotenv.2021.149403
  • Zhenjia, Q., Jincheng, X., Chenglin, Z., Youbin, Y., & Huang, L. (2023). Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus. South China Fisheries Science, 19(2), 89–97. https://doi.org/10.12131/20220153

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.