21
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Flow features of a horseshoe tunnel bend

ORCID Icon, ORCID Icon, & ORCID Icon
Received 31 May 2023, Accepted 03 Apr 2024, Published online: 12 Jun 2024

References

  • Amara, L., Berreksi, A., & Achour, B. (2020). Approximate analytical solution for supercritical flow in rectangular curved channels. Applied Mathematical Modelling, 80, 191–203. https://doi.org/10.1016/j.apm.2019.10.064
  • Beltrami, G. M, Del Guzzo, A., & Repetto, R. (2007). A simple method to regularize supercritical flow profiles in bends. Journal of Hydraulic Research, 45(6), 773–786. https://doi.org/10.1080/00221686.2007.9521815
  • Cengel, Y., & Cimbala, J. (2006). Mass, bernoulli, and energy equations. In Fluid mechanics fundamentals and applications (pp.171–226). McGraw Hill.
  • Chen, S. H. (2015). Hydraulic tunnels. In Hydraulic structures (pp.755–812). Springer.
  • Chow, V. T. (1959). Flow in channels of nonlinear alignment. In Open-channel hydraulics (pp.439–455). McGraw Hill.
  • Del Giudice, G., Gisonni, C., & Hager, W. H. (2000). Supercritical flow in bend manhole. Journal of Irrigation and Drainage Engineering, 126(1), 48–56. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(48)
  • Ghaeini-Hessaroeyeh, M., Tahershamsi, A., & Namin, M. M. (2011). Numerical modelling of supercritical flow in rectangular chute bends. Journal of Hydraulic Research, 49(5), 685–688. https://doi.org/10.1080/00221686.2011.589130
  • Ghazanfari-Hashemi, R. S., Montazeri Namin, M., Ghaeini-Hessaroeyeh, M., & Fadaei-Kermani, E. (2020). A numerical study on three-dimensionality and turbulence in supercritical bend flow. International Journal of Civil Engineering, 18, 381–391. https://doi.org/10.1007/s40999-019-00471-w
  • Gisonni, C., & Hager, W. H. (1999). Studying flow at tunnel bends. The International Journal on Hydropower & Dams, 6(2), 76–79.
  • Gisonni, C., & Hager, W. H. (2016). Supercritical flow in circular conduit bends. Journal of Hydraulic Research, 54(2), 238–240. https://doi.org/10.1080/00221686.2015.1137089
  • Hager, W. H. (2010). Wastewater hydraulics, theory and practice. Springer.
  • Huang, X. B., & Wang, Q. (2018). Numerical models and theoretical analysis of supercritical bend flow. Water Science and Engineering, 11(4), 338–343. https://doi.org/10.1016/j.wse.2018.12.002
  • Ippen, A. T. (1951). Mechanics of supercritical flow. Transactions, American Society of Civil Engineers, 116, 268–295. https://doi.org/10.1061/TACEAT.0006520
  • Ippen, A. T., & Knapp, R. T. (1936). A study of high-velocity flow in curved channels of rectangular cross-section. Transactions American Geophysical Union, 17(2), 516–521. https://doi.org/10.1029/TR017i002p00516
  • Kolarevic, M., Savic, L., Kapor, R., & Mladenovic, N. (2015). Supercritical flow in circular conduit bends. Journal of Hydraulic Research, 53(1), 93–100. https://doi.org/10.1080/00221686.2014.932856
  • Knapp, R. T. (1951). Design of channel curves for supercritical flow. Transactions, American Society of Civil Engineers, 116, 1318–1347. https://doi.org/10.1061/TACEAT.0006485
  • Liu, J., Wang, Z., & Fang, X. (2010a). Formulas for computing geometry and critical depth of general horseshoe tunnels. Transactions of the ASABE, 53(4), 1159–1164. https://doi.org/10.13031/2013.32597
  • Liu, J., Wang, Z., & Fang, X. (2010b). Iterative formulas and estimation formulas for computing normal depth of horseshoe cross-section tunnel. Journal of Irrigation and Drainage Engineering, 136(11), 786–790. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000254
  • Mostkov, V. M., Ilyushin, V. F., & Sheichenko, S. N. (2000). Building and design standards for hydraulic tunnels. Hydrotechnical Construction, 34(5), 238–242. https://doi.org/10.1007/BF02765972
  • Müller, R. (1943). Theoretische Grundlagen der Fluss- und Wildbachverbauungen (Theoretical principles for regulation of rivers and torrents) [Doctoral dissertation, ETH Zürich]. ETH Zürich Theses and Dissertations Archive. https://www.research-collection.ethz.ch/handle/20.500.11850/135192.
  • Munson, B. R., Rothmayer, A. P., & Okiishi, T. H. (2012). Fundamental of fluid mechanics. Wiley.
  • Poggi, B. (1956). Correnti veloci nei canali in curva [Supercritical flow in curved channels]. L'energia Elettrica, 34, 465–480.
  • Raju, S. (1937). Study on the flow resistance in curved open channels. American Society of Civil Engineers, 63(2), 49.
  • Reinauer, R., & Hager, W. H. (1997). Supercritical bend flow. Journal of Hydraulic Engineering, 123(3), 208–218. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(208)
  • Shukry, A. (1950). Flow around bends in an open flume. Transactions of the American Society of Civil Engineers, 115(1), 751–778. https://doi.org/10.1061/TACEAT.0006426
  • Slisskii, S. M., & Kalandarov, I. A. (1987). Calculation of the position of the free water surface on a bend of a free-flow tunnel. Hydrotechnical Construction, 21, 460–465. https://doi.org/10.1007/BF01424778
  • Thandaveswara, B., & Seetharamiah, K. (1971, November). Energy loss in open channel 90∘ bend [Paper presentation]. Fourth Australasian Conference on Hydraulics and Fluid Mechanics.
  • Tian, Z., Ding, C., Wang, W., & Zhang, C. N. (2018). Supercritical flow in bend with variable curvature radius. Journal of Hydraulic Research, 57(5), 724–732. https://doi.org/10.1080/00221686.2018.1494049
  • U.S. Army Corps of Engineers1 (1972). Supercritical flow in curved channels (Report No. 1-109).
  • U.S. Army Corps of Engineers (1977). Hydraulic design criteria (Vol. 2). U.S. Waterways Experiment station.
  • U.S. Bureau of Reclamation (1992). Design standards no. 3: Water conveyance facilities, fish facilities, and roads and bridges. In Chapter 11: General hydraulic considerations.
  • Valiani, A., & Caleffi, V. (2005). Brief analysis of shallow water equations suitability to numerically simulate supercritical flow in sharp bends. Journal of Hydraulic Engineering, 131(10), 912–916. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(912)
  • Wang, B., Wu, P., Cheng, Y. L., Wu, C., & Zhou, Q. (2013, September). Water surface profiles in a tunnel bend with high velocity [Paper presentation]. 35th IAHR World Congress.
  • Wang, B., Zhou, Q., Wu, C., Cheng, Y. L., & Zhang, T. (2014). Three-dimensional modeling of supercritical bend flow. In Proceeding of the 13th National Conference on Hydro-dynamics (26th National Conference on Hydrodynamics) (pp. 685–692). China Ocean Press.
  • Woodward, S. M., & Posey, C. J. (1941). Hydraulics of steady flow in open channels. J. Wiley & Sons, Inc.
  • Woodward, S. M., Riegel, R. M., & Beebe, J. C. (1928). Theory of the hydraulic jump and backwater curves. The hydraulic jump as a means of dissipating energy (Technical Report Part III). The Miami Conservancy District.
  • Yarnell, D. L., & Woodward, S. M. (1936). Flow of water around 180-degree bends (Vol. 526, No. 64, p. 1). U.S. Dept. Agriculture Tech. Bull.
  • Yen, C., & Howe, J. (1942). Effects of channel shape on losses in a canal bend. Civil Engineering, 12(1), 28–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.