0
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Multi-step ahead prediction of lake water temperature using neural network and physically-based model

ORCID Icon & ORCID Icon
Received 27 Mar 2023, Accepted 02 Jul 2024, Published online: 05 Aug 2024

References

  • Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1), 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214
  • Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. Paper presented at the European conference on computer vision (ECCV). https://doi.org/10.1007/978-3-030-01234-2_49
  • Cheng, J. P., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine reading. arXiv:1601.06733v7. https://doi.org/10.48550/arXiv.1601.06733
  • Choiński, A., Ptak, M., & Strzelczak, A. (2015). Changeability of accumulated heat content in alpine-type lakes. Polish Journal of Environmental Studies, 24(6), 2363–2369. https://doi.org/10.15244/pjoes/58871
  • Christin, S., Hervet, É, & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10(10), 1632–1644. https://doi.org/10.1111/2041-210X.13256
  • Dhakal, C. P. (2017). A naïve approach for comparing a forecast model. International Journal of Thesis Projects and Dissertations, 5(1), 1–3.
  • Di Nunno, F., Zhu, S., Ptak, M., Sojka, M., & Granata, F. (2023). A stacked machine learning model for multi-step ahead prediction of lake surface water temperature. Science of The Total Environment, 890, 164323. https://doi.org/10.1016/j.scitotenv.2023.164323
  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
  • Fang, K., Shen, C., Kifer, D., & Yang, X. (2017). Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network. Geophysical Research Letters, 44(21), 11,030–11,039. https://doi.org/10.1002/2017GL075619
  • Heddam, S., Ptak, M., & Zhu, S. (2020). Modelling of daily lake surface water temperature from air temperature: Extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. Journal of Hydrology, 588, 125130. https://doi.org/10.1016/j.jhydrol.2020.125130
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73. doi:10.1038/scientificamerican0792-66
  • Howard, A. G., Zhu, M. L., Chen, B., Kalenichenko, D., Wang, W. J., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. https://doi.org/10.48550/arXiv.1704.04861
  • Hunter, J. M., Maier, H. R., Gibbs, M. S., Foale, E. R., Grosvenor, N. A., Harders, N. P., & Kikuchi-Miller, T. C. (2018). Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems. Hydrology and Earth System Sciences, 22(5), 2987–3006. https://doi.org/10.5194/hess-22-2987-2018
  • Jia, T., & Luo, Y. (2022). Using Air2water model to predict the water temperature of Fuxian lake. In B. J. He, D. Prasad, G. Pignatta, & J. Jupesta (Eds.), Climate Change and Environmental Sustainability. Advances in Science, Technology & Innovation. Springer (pp. 29–35). https://doi.org/10.1007/978-3-031-12015-2_4
  • Jones, I., & Feuchtmayr, H. (2017). Data from automatic water monitoring buoy from Blelham Tarn, 2008 to 2011. NERC Environmental Information Data Centre. https://doi.org/10.5285/38f382d6-e39e-4e6d-9951-1f5aa04a1a8c
  • Jones, I., Feuchtmayr, H., & Maberly, S. C. (2017). Data from automatic water monitoring buoy from Windermere south basin, 2012 to 2015. NERC Environmental Information Data Centre. https://doi.org/10.5285/e68063b9-2e52-44df-8b6f-a3deb37b76cb
  • Kamal, K. C., Yin, Z., Wu, M., & Wu, Z. (2019). Depthwise separable convolution architectures for plant disease classification. Computers and Electronics in Agriculture, 165, 104948. https://doi.org/10.1016/j.compag.2019.104948
  • Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016
  • Kaiser, L., Gomez, A. N., & Chollet, F. (2017). Depthwise separable convolutions for neural machine translation. arXiv:1706.03059. https://doi.org/10.48550/arXiv.1706.03059
  • Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318–2331. https://doi.org/10.1109/TKDE.2017.2720168
  • Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.energy.2019.05.230
  • Kim, S., Hong, S., Joh, M., & Song, S. K. (2017). Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv:1711.02316. https://doi.org/10.48550/arXiv.1711.02316
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  • Kutz, J. N. (2017). Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814, 1–4. https://doi.org/10.1017/jfm.2016.803
  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
  • Livingstone, D. M. (2003). Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change, 57(1-2), 205–225. https://doi.org/10.1023/A:1022119503144
  • Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long short term memory networks for anomaly detection in time series. Conference: 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015, Bruges, Belgium.
  • Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of Chemical Information and Modeling, 59(6), 2545–2559. https://doi.org/10.1021/acs.jcim.9b00266
  • Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in Bioinformatics, 18(5), 851–869. https://doi.org/10.1093/bib/bbw068
  • Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water Resources Research, 34(10), 2685–2692. https://doi.org/10.1029/98WR01877
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Perroud, M., Goyette, S., Martynov, A., Beniston, M., & Annevillec, O. (2009). Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models. Limnology and Oceanography, 54(5), 1574–1594. https://doi.org/10.4319/lo.2009.54.5.1574
  • Piccolroaz, S. (2016). Prediction of lake surface temperature using the air2water model: Guidelines, challenges, and future perspectives. Advances in Oceanography and Limnology, 7(1), 36–50. https://doi.org/10.4081/aiol.2016.5791
  • Piccolroaz, S., Toffolon, M., & Majone, B. (2013). A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrology and Earth System Sciences, 17(8), 3323–3338. https://doi.org/10.5194/hess-17-3323-2013
  • Piccolroaz, S., Zhu, S., Ladwig, R., Carrea, L., Oliver, S., Piotrowski, A. P., Ptak, M., Shinohara, R., Sojka, M., Woolway, R. I., & Zhu, D. Z. (2024). Lake water temperature modeling in an Era of climate change: Data sources, models, and future prospects. Reviews of Geophysics, 62(1), e2023RG000816. https://doi.org/10.1029/2023RG000816
  • Piotrowski, A. P., Napiorkowski, J. J., & Zhu, S. (2022a). Novel air2water model variant for lake surface temperature modeling with detailed analysis of calibration methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 553–569. https://doi.org/10.1109/JSTARS.2022.3226516
  • Piotrowski, A. P., Zhu, S., & Napiorkowski, J. J. (2022b). Air2water model with nine parameters for lake surface temperature assessment. Limnologica, 94, 125967. https://doi.org/10.1016/j.limno.2022.125967
  • Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
  • Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2016). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21. https://doi.org/10.1109/JBHI.2016.2636665
  • Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., Karpatne, A., Hansen, G. J. A., Hanson, P. C., Watkins, W., Steinbach, M., & Kumar, V. (2019). Process-guided deep learning predictions of lake water temperature. Water Resources Research, 55(11), 9173–9190. https://doi.org/10.1029/2019WR024922
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Satman, M. (2013). Machine coded genetic algorithms for real parameter optimization problems. Gazi University Journal of Science, 26(1), 85–95.
  • Shu, D., Li, Z., & Farimani, A. B. (2023). A physics-informed diffusion model for high-fidelity flow field reconstruction. Journal of Computational Physics, 478, 111972. https://doi.org/10.1016/j.jcp.2023.111972
  • Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82(12), 2635–2670. https://doi.org/10.2166/wst.2020.369
  • Sun, J., Di Nunno, F., Sojka, M., Ptak, M., Luo, Y., Xu, R. Y., Xu, J., Luo, Y., Zhu, S. L., & Granata, F. (2024). Prediction of daily river water temperatures using an optimized model based on NARX networks. Ecological Indicators, 161, 111978. https://doi.org/10.1016/j.ecolind.2024.111978
  • Usharani, B. (2023). ILF-LSTM: Enhanced loss function in LSTM to predict the sea surface temperature. Soft Computing, 27(18), 13129–13141. https://doi.org/10.1007/s00500-022-06899-y
  • Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1
  • Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018, 7068349. https://doi.org/10.1155/2018/7068349
  • Wainberg, M., Merico, D., Delong, A., & Frey, B. J. (2018). Deep learning in biomedicine. Nature Biotechnology, 36(9), 829–838. https://doi.org/10.1038/nbt.4233
  • Wang, J., Yu, L. C., Lai, K. R., & Zhang, X. (2016). Dimensional sentiment analysis using a regional CNN-LSTM model. In K. Erk, & N. A. Smith (Eds.), Proceedings of the 54th annual meeting of the association for computational linguistics (Volume 2: Short papers, pp. 225–230). Association for Computational Linguistics Berlin, Germany. http://doi.org/10.18653/v1/P16-2037
  • Wang, L., Xu, B., Zhang, C., Fu, G., Chen, X., Zheng, Y., & Zhang, J. (2022). Surface water temperature prediction in large-deep reservoirs using a long short-term memory model. Ecological Indicators, 134, 108491. https://doi.org/10.1016/j.ecolind.2021.108491
  • Xu, P., Xu, S. J., Shi, K. Q., Ou, M. Y., Zhu, H. N., Xu, G. J., Gao, D. B., Li, G. M., & Zhao, Y. (2024). Prediction of water temperature based on graph neural network in a small-scale observation via coastal acoustic tomography. Remote Sensing, 16(4), 646. https://doi.org/10.3390/rs16040646
  • Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78–86. https://doi.org/10.1016/j.jmsy.2018.05.011
  • Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of deep learning in food: A review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1793–1811. https://doi.org/10.1111/1541-4337.12492
  • Zhu, S. L., Di Nunno, F., Ptak, M., Sojka, M., & Granata, F. (2023). A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave. Science of The Total Environment, 905, 167121. https://doi.org/10.1016/j.scitotenv.2023.167121
  • Zhu, S. L., Di Nunno, F., Sun, J., Sojka, M., Ptak, M., & Granata, F. (2024). An optimized NARX-based model for predicting thermal dynamics and heatwaves in rivers. Science of The Total Environment, 926, 171954. https://doi.org/10.1016/j.scitotenv.2024.171954
  • Zhu, S., Ptak, M., Yaseen, Z. M., Dai, J., & Sivakumar, B. (2020). Forecasting surface water temperature in lakes: A comparison of approaches. Journal of Hydrology, 585, 124809. https://doi.org/10.1016/j.jhydrol.2020.124809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.