1,315
Views
118
CrossRef citations to date
0
Altmetric
Original Articles

Inorganic–Polymer Composite Membranes for Proton Exchange Membrane Fuel Cells

Pages 245-296 | Received 20 Feb 2006, Accepted 18 Apr 2006, Published online: 07 Feb 2007

References

  • Kordesch , K. V. 1978 . 25 years of fuel cell development (1951–1976) . J. Electrochem. Soc. , 125 : 77 – 91C .
  • Herring , A. M. 2005 . “ Fuel cell membranes ” . In Encyclopedia of Chemical Processing Edited by: Lee , S. Vol. 2 , 1085 – 1097 . New York : Marcel Dekker .
  • Savadogo , O. 2004 . Emerging membranes for electrochemical systems part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications . J. Power Sources , 127 : 135 – 161 .
  • Haile , S. M. 2003 . Fuel cell materials and components . Acta Materialia , 51 : 5981 – 6000 .
  • Vielstich , W. , Lamm , A. and Gasteiger , H. 2003 . Handbook of Fuel Cells—Fundamentals, Technology, Applications West Sussex, , England : John Wiley & Sons .
  • Costamagna , P. and Srinivasan , S. 2001 . Quantum jumps in the pemfc science and technology from the 1960s to the year 2000 part II. Engineering, technology development and application aspects . J. Power Sources , 102 : 253 – 269 .
  • Costamagna , P. and Srinivasan , S. 2001 . Quantum jumps in the pemfc science and technology from the 1960s to the year 2000 part I, Fundamental scientific aspects . J. Power Sources , 102 : 242 – 252 .
  • Kreuer , K. D. 2001 . On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells . J. Membrane Science , 185 : 29 – 39 .
  • Alberti , G. and Casciola , M. 2003 . Composite membranes for medium‐temperature pem fuel cells . Annu. Rev. Mater. Res. , 33 : 129 – 154 .
  • Li , Q. , He , R. , Jensen , J. O. and Bjerrum , N. J. 2003 . Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C . Chem. Mater. , 15 : 4896 – 4915 .
  • Jones , D. J. and Roziere , J. 2001 . Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications . J. Membrane Science , 185 : 41 – 58 .
  • Hamrock , S. J. and Yandrasits , M. 2006 . Proton exchange membranes for fuel cell applications . Polymer Reviews , 46
  • Kerres , J. 2005 . Blended and cross‐linked ionomer membranes for application in membrane fuel cells . Fuel Cells , 5 : 230 – 247 .
  • Karthikeyan , C. S. , Nunes , S. P. , Prado , L. A.S.A. , Ponce , M. L. , Silva , H. , Ruffmann , B. and Schulte , K. 2005 . Polymer nanocomposite membranes for DMFC application . J. Membrane Science , 254 : 139 – 146 .
  • Li , X. , Roberts , E. P.L. and Holmes , S. M. 2006 . Evaluation of composite membranes for direct methanol fuel cells . J. Power Sources , 154 : 115 – 123 .
  • Kreuer , K.‐D. 1996 . Proton conductivity: Materials and applications . Chem. Mater. , 8 : 610 – 641 .
  • Cotton , F. A. , Wilkinson , G. , Murillo , C. A. and Bochmann , M. 1999 . Advanced Inorganic Chemistry John Wiley & Sons .
  • Jalani , N. H. , Dunn , K. and Datta , R. 2005 . Synthesis and characterization of nafion®‐MO2 (M=Zr, Si, Ti) nanocomposite membranes for higher temperature pem fuel cells . Electrochimica Acta , 51 : 553 – 560 .
  • Lonyi , F. , Valyon , J. , Engelhardt , J. and Mizukami , F. 1996 . Characterization and catalytic properties of sulfated ZrO2‐TiO2 mixed oxides . J. Catal. , 160 : 279 – 289 .
  • Tsipursky , S. I. and Drits , V. A. 1984 . The distribution of octahedral cations in the 2∶1 layers of dioctahedral smectites studied by oblique‐texture electron diffraction . Clay Minerals , 19 : 177 – 193 .
  • Thomassin , J.‐M. , Pagnoulle , C. , Caldarella , G. , Germain , A. and Jerome , R. 2006 . Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application . J. Membrane Science , 270 : 50 – 56 .
  • Dent , L. S. and Smith , J. V. 1958 . Crystal structure of chabazite, a molecular sieve . Nature , 181 : 1794 – 1796 .
  • Meier , W. M. 1961 . The crystal structure of Mordenite (Ptilolite) . Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie , 115 : 439 – 450 .
  • Boysen , D. A. , Uda , T. , Chisholm , C. R.I. and Haile , S. M. 2004 . High‐performance solid acid fuel cells through humidity stabilization . Science , 303 : 68 – 70 .
  • Merle , R. B. , Chisholm , C. R.I. , Boysen , D. A. and Haile , S. M. 2003 . Instability of sulfate and selenate solid acids in fuel cell environments . Energy Fuels , 17 : 210 – 215 .
  • Haile , S. M. , Boysen , D. A. , Chisholm , C. R.I. and Merle , R. B. 2001 . Solid acids as fuel cell electrolytes . Nature , 410 : 910 – 913 .
  • Yang , C. , Costamagna , P. , Srinivasan , S. , Benziger , J. and Bocarsly , A. B. 2001 . Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells . J. Power Sources , 103 : 1 – 9 .
  • Tatsumisago , M. , Tezuka , T. , Hayashi , A. and Tadanaga , K. 2005 . Preparation of proton conductive composites with cesium hydrogen sulfate and phosphosilicate gel . Solid State Ionics , 176 : 2909 – 2912 .
  • Wang , S. , Otomo , J. , Ogura , M. , Wen , C.‐J. , Nagamoto , H. and Takahashi , H. 2005 . Preparation and characterization of proton‐conducting CsHSO4‐SiO2 nanocomposite electrolyte membranes . Solid State Ionics , 176 : 755 – 760 .
  • Otomo , J. , Shigeoka , H. , Nagamoto , H. and Takahashi , H. 2005 . Phase transition behavior and proton conduction mechanism in cesium hydrogen sulfate/silica composite . J. Physics and Chemistry of Solids , 66 : 21 – 30 .
  • Duncan , D. C. , Chambers , R. C. , Hecht , E. and Hill , C. L. 1995 . Mechanism and dynamics in the H3(PW12O40)‐catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of (PO4[WO(O2)2]4)3− . J. Am. Chem. Soc. , 117 : 681 – 691 .
  • Bourlinos , A. B. , Raman , K. , Herrera , R. , Zhang , Q. , Archer , L. A. and Giannelis , E. P. 2004 . A liquid derivative of 12‐tungstophosphoric acid with unusually high conductivity . J. Am. Chem. Soc. , 126 : 15358 – 15359 .
  • Staiti , P. , Arico , A. S. , Baglio , V. , Lufrano , F. , Passalacqua , E. and Antonucci , V. 2001 . Hybrid nafion‐silica membranes doped with heteropolyacids for application in direct methanol fuel cells . Solid State Ionics , 145 : 101 – 107 .
  • Shanmugam , S. , Viswanathan , B. and Varadarajan , T. K. 2006 . Synthesis and characterization of silicotungstic acid based organic‐inorganic nanocomposite membrane . Journal of Membrane Science , 275 : 105 – 109 .
  • Honma , I. , Nakajima , H. and Nomura , S. 2002 . High temperature proton conducting hybrid polymer electrolyte membranes . Solid State Ionics , 154–155 : 707 – 712 .
  • Honma , I. , Nakajima , H. , Nishikawa , O. , Sugimoto , T. and Nomura , S. 2002 . Amphiphilic organic/inorganic nanohybrid macromolecules for intermediate‐temperature proton conducting electrolyte membranes . J. Electrochem. Soc. , 149 : A1389 – 1392 .
  • Honma , I. , Nakajima , H. , Nishikawa , O. , Sugimoto , T. and Nomura , S. 2003 . Organic/inorganic nano‐composites for high temperature proton conducting polymer electrolytes . Solid State Ionics , 162–163 : 237 – 245 .
  • Honma , I. , Nakajima , H. , Nishikawa , O. , Sugimoto , T. and Nomura , S. 2003 . Family of high‐temperature polymer‐electrolyte membranes synthesized from amphiphilic nanostructured macromolecules . J. Electrochem. Soc. , 150 : A616 – 619 .
  • Feng , F. , Yang , Z. , Coutinho , D. H. , Ferraris , J. P. and Balkus , K. J. 2005 . Synthesis of proton conducting tungstosilicate mesoporous materials and polymer composite membranes . Microporous and Mesoporous Materials , 81 : 217 – 234 .
  • Vernon , D. R. , Meng , F. , Dec , S. F. , Williamson , D. L. , Turner , J. A. and Herring , A. M. 2005 . Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono‐lacunary heteropolyacid for PEM fuel cell applications . J. Power Sources , 139 : 141 – 151 .
  • Ponce , M. L. , de A. Prado , L. A.S. , Silva , V. and Nunes , S. P. 2004 . Membranes for direct methanol fuel cell based on modified heteropolyacids . Desalination , 162 : 383 – 391 .
  • Ponce , M. L. , Prado , L. , Ruffmann , B. , Richau , K. , Mohr , R. and Nunes , S. P. 2003 . Reduction of methanol permeability in polyetherketone‐heteropolyacid membranes . J. Membrane Science , 217 : 5 – 15 .
  • Yang , C. , Srinivasan , S. , Bocarsly , A. B. , Tulyani , S. and Benziger , J. B. 2004 . A comparison of physical properties and fuel cell performance of nafion and zirconium phosphate/nafion composite membranes . J. Membrane Science , 237 : 145 – 161 .
  • Alberti , G. and Casciola , M. 1997 . Layered metalic phosphonates, a large class of inorgano‐organic proton conductors . Solid State Ionics , 97 : 177 – 186 .
  • Clearfield , A. , Wang , J. D. , Tian , Y. , Stein , E. and Bhardwaj , C. 1995 . Synthesis and stability of mixed ligand zirconium phosphonate layered compounds . J. Solid State Chemistry , 117 : 275 – 289 .
  • Poltarzewski , Z. , Wieczorek , W. , Przyluski , J. and Antonucci , V. 1999 . Novel proton conducting composite electrolytes for application in methanol fuel cells . Solid State Ionics , 119 : 301 – 304 .
  • Casciola , M. , Alberti , G. , Ciarletta , A. , Cruccolini , A. , Piaggio , P. and Pica , M. 2005 . Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity . Solid State Ionics , 176 : 2985 – 2989 .
  • Alberti , G. , Casciola , M. , Pica , M. , Tarpanelli , T. and Sganappa , M. 2005 . New preparation methods for composite membranes for medium temperature fuel cells based on precursor solutions of insoluble inorganic compounds . Fuel Cells , 5 : 366 – 374 .
  • Genova‐Dimitrova , P. , Baradie , B. , Foscallo , D. , Poinsignon , C. and Sanchez , J. Y. 2001 . Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): Sulfonated polysulfone associated with phosphatoantimonic acid . J. Membrane Science , 185 : 59 – 71 .
  • Boysen , D. A. , Chisholm , C. R.I. , Haile , S. M. and Narayanan , S. R. 2000 . Polymer solid acid composite membranes for fuel‐cell applications . J. Electrochem. Soc. , 147 : 3610 – 3613 .
  • Herring , A. M. , Turner , J. A. , Dec , S. F. , Sweikart , M. A. , Malers , J. L. , Meng , F. , Pern , F. J. , Horan , J. and Vernon , D. 2006 . “The use of heteropoly acids in composite membranes for elevated temperature PEM fuel cell operation; lessons learnt from three different approaches” . In Fourth International Symposium on Proton Conducting Membrane Fuel Cells, In Proceedings of the Electrochemical Society Edited by: Van Zee , J. W. , Murthy , M. , Narayanan , S. R. , Takeuchi , E. S. , Fuller , T. F. and Ota , K. In press
  • Chckiewicz , K. , Zukowska , G. and Wieczorek , W. 2001 . Synthesis and characterization of the proton‐conducting gels based on PVDF and PMMA matrixes doped with heteropolyacids . Chem. Mater. , 13 : 379 – 384 .
  • Watanabe , M. , Uchida , H. and Masaomi , E. 1998 . Polymer electrolyte membranes incorporated with nanometer‐size particles of Pt and/or metal‐oxides: Experimental analysis of the self‐humidification and suppresion of gas‐crossover in fuel cells . J. Phys. Chem. B , 102 : 3129 – 3137 .
  • Watanabe , M. , Uchida , H. , Seki , Y. , Emori , M. and Stonehart , P. 1996 . Self‐humidyfying polymer electrolyte membranes for fuel cells . J. Electrochem. Soc. , 143 : 3847 – 3852 .
  • Uchida , H. , Ueno , Y. , Hagihara , H. and Watanabe , M. 2003 . Self‐humidifying electrolyte membranes for fuel cells preparation of highly dispersed tio2 particles in Nafion 112 . J. Electrochem. Soc. , 150 : A57 – 62 .
  • Arico , A. S. , Baglio , V. , Antonucci , V. , Nicotera , I. , Oliviero , C. and Coppola , L. 2006 . Antonucci, P.L “An NMR and SAXS investigation of DMFC composite recast Nafion membranes containing ceramic fillers . J. Membrane Science , 270 : 221 – 227 .
  • Dimitrova , P. , Friedrich , K. A. , Vogt , B. and Stimming , U. 2002 . Transport properties of ionomer composite membranes for direct methanol fuel cells . J. Electroanalytical Chemistry , 532 : 75 – 83 .
  • Antonucci , P. L. , Arico , A. S. , Creti , P. , Ramunni and Antonucci , V. 1999 . Investigation of a direct methanol fuel cell based on a composite Nafion®‐silica electrolyte for high temperature operation . Solid State Ionics , 125 : 431 – 437 .
  • Mauritz , K. A. , Stefanithis , I. D. , Davis , S. V. , Scheetz , R. W. , Pope , R. K. , Garth , G. L. and Huang , H.‐H. 1995 . Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol‐gel reaction . J. Applied Polymer Science , 55 : 181 – 190 .
  • Arico , A. S. , Baglio , V. , Di Blasi , A. , Creti' , P. , Antonucci , P. L. and Antonucci , V. 2003 . Influence of the acid‐base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells . Solid State Ionics , 161 : 251 – 265 .
  • Baradie , B. , Dodelet , J. P. and Guay , D. 2000 . Hybrid Nafion®‐inorganic membrane with potential applications for polymer electrolyte fuel cells . J. Electroanalytical Chemistry , 489 : 101 – 105 .
  • Jung , D. H. , Cho , S. Y. , Peck , D. H. , Shin , D. R. and Kim , J. S. 2002 . Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell . J. Power Sources , 106 : 173 – 177 .
  • Jiang , R. , Kunz , H. R. and Fenton , J. M. 2006 . Composite silica/Nafion; membranes prepared by tetraethylorthosilicate sol‐gel reaction and solution casting for direct methanol fuel cells . J. Membrane Science , 272 : 116 – 124 .
  • Zoppi , R. A. , Yoshida , I. V.P. and Nunes , S. P. 1998 . Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol‐gel reaction from solution: Morphology and thermal analysis . Polymer , 39 : 1309 – 1315 .
  • Zoppi , R. A. and Nunes , S. P. 1998 . Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol‐gel reaction from solution . J. Electroanalytical Chemistry , 445 : 39 – 45 .
  • Adjemian , K. T. , Lee , S. J. , Srinivasan , S. , Benziger , J. and Bocarsly , A. B. 2002 . Silicon oxide Nafion composite membranes for proton‐exchange membrane fuel cell operation at 80–140°C . J. Electrochem. Soc. , 149 : A256 – 261 .
  • Adjemian , K. T. , Srinivasan , S. , Benziger , J. and Bocarsly , A. B. 2002 . Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes . J. Power Sources , 109 : 356 – 364 .
  • Wang , H. , Holmberg , B. A. , Huang , L. , Wang , Z. , Mitra , A. , Norbeck , J. M. and Yan , Y. 2002 . Nafion‐bifunctional silica composite proton conductive membranes . J. Mater. Chem. , 12 : 834 – 837 .
  • Aparicio , M. and Klein , L. C. 2005 . Synthesis and characterization of nafion/[60SiO2–30P2O5–10ZrO2] sol‐gel composite membranes for PEMFCs . J. Electrochem. Soc. , 152 : A493 – 496 .
  • Damay , F. and Klein , L. C. 2003 . Transport properties of Nafion™ composite membranes for proton‐exchange membranes fuel cells . Solid State Ionics , 162–163 : 261 – 267 .
  • Kim , Y. , Choi , S. , Lee , H. , Hong , M. , Kim , K. and Lee , H. 2004 . Organic‐inorganic composite membranes as addition of SiO2 for high temperature‐operation in polymer electrolyte membrane fuel cells (PEMFCs) . Electrochimica Acta , 49 : 4787 – 4796 .
  • Jung , D. H. , Myoung , Y.‐B. , Cho , S.‐Y. , Shin , D. R. and Peck , D. H. 2001 . A performance evaluation of direct methanol fuel cell using impregnated tetraethyl‐orthosilicate in cross‐linked polymer membrane . Int. J. Hydrogen Energy , 26 : 1263 – 1269 .
  • Chang , H. Y. and Lin , C. W. 2003 . Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells . J. Membrane Science , 218 : 295 – 306 .
  • Bonnet , B. , Jones , D. J. , Roziere , J. , Tchicaya , L. , Alberti , G. , Cassciola , M. , Massinelli , L. , Bauer , B. , Peraio , A. and Ramunni , E. 2000 . Hybrid organic‐inorganic membranes for a medium temperature fuel cell . J. New Materials for Electrochemical Systems , 3 : 87 – 92 .
  • Nunes , S. P. , Ruffmann , B. , Rikowski , E. , Vetter , S. and Richau , K. 2002 . Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells . J. Membrane Science , 203 : 215 – 225 .
  • Kanamura , K. , Mitsui , T. and Munakata , H. 2005 . Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer . Chem. Mater. , 17 : 4845 – 4851 .
  • Jung , D. H. , Cho , S. Y. , Peck , D. H. , Shin , D. R. and Kim , J. S. 2003 . Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell . J. Power Sources , 118 : 205 – 211 .
  • Silva , R. F. , Passerini , S. and Pozio , A. 2005 . Solution‐cast Nafion®/montmorillonite composite membrane with low methanol permeability . Electrochimica Acta , 50 : 2639 – 2645 .
  • Rhee , C. , Kim , H. , Chang , K. and Lee , J. 2005 . Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells . Chem. Mater. , 17 : 1691 – 1697 .
  • Chang , J.‐H. , Park , J. H. , Park , G.‐G. , Kim , C.‐S. and Park , O. O. 2003 . Proton‐conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials . J. Power Sources , 124 : 18 – 25 .
  • Zhang , G. and Zhou , Z. 2005 . Organic/inorganic composite membranes for application in DMFC . J. Membrane Science , 261 : 107 – 113 .
  • Tricoli , V. and Nannetti , F. 2003 . Zeolite‐nafion composites as ion conducting membrane materials . Electrochimica Acta , 48 : 2625 – 2633 .
  • Baglio , V. , Di Blasi , A. , Arico , A. S. , Antonucci , V. , Antonucci , P. L. , Nannetti , F. and Tricoli , V. 2005 . Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite‐based composite membranes . Electrochimica Acta , 50 : 5181 – 5188 .
  • Kwak , S.‐H. , Yang , T.‐H. , Kim , C.‐S. and Yoon , K. H. 2004 . Polymer composite membrane incorporated with a hygroscopic material for high‐temperature PEMFC . Electrochimica Acta , 50 : 653 – 657 .
  • Chen , Z. , Holmberg , B. and Yan , Y. 2005 . “Nanocomposite membranes based on uv‐curable crosslinked polytetrafluoroethylene and acid functionalized zeolite nanocrystals for fuel cell applications” . 229th ACS National Meeting . 2005 , San Diego, CA. Abstracts of Papers
  • Chalkova , E. , Fedkin , M. , Wesolowski , D. and Lvov , S. 2005 . Effect of TiO2 surface properties on performance of Nafion‐based composite membranes in high temperature and low relative humidity PEM fuel cells . J. Electrochem. Soc. , 152 : A1742 – 1747 .
  • Sacca , A. , Carbone , A. , Passalacqua , E. , D'Epifanio , A. , Licoccia , S. , Traversa , E. , Sala , E. , Traini , F. and Ornelas , R. 2005 . Nafion‐TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs) . J. Power Sources , 152 : 16 – 21 .
  • Baglio , V. , Di Blasi , A. , Arico , A. S. , Antonucci , V. , Antonucci , P. L. , Trakanprapai , C. , Esposito , V. , Licoccia , S. and Traversa , E. 2005 . Composite mesoporous titania Nafion‐based membranes for direct methanol fuel cell operation at high temperature . J. Electrochem. Soc. , 152 : A1373 – 1377 .
  • Baglio , V. , Arico , A. S. , Blasi , A. D. , Antonucci , V. , Antonucci , P. L. , Licoccia , S. , Traversa , E. and Fiory , F. S. 2005 . Nafion‐TiO2 composite DMFC membranes: Physico‐chemical properties of the filler versus electrochemical performance . Electrochimica Acta , 50 : 1241 – 1246 .
  • Liu , Z. , Guo , B. , Huang , J. , Hong , L. , Han , M. and Gan , L. M. 2006 . Nano‐TiO2‐coated polymer electrolyte membranes for direct methanol fuel cells . J. Power Sources , 157 : 207 – 211 .
  • Thampan , T. M. , Jalani , N. H. , Choi , P. and Datta , R. 2005 . Systematic approach to design higher temperature composite PEMs . J. Electrochem. Soc. , 152 : A316 – 325 .
  • Silva , V. , Ruffmann , B. , Silva , H. , Gallego , Y. , Mendes , A. , Madeira , L. and Nunes , S. 2005 . Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects . J. Power Sources , 140 : 41 – 49 .
  • Silva , V. S. , Ruffmann , B. , Silva , H. , Gallego , Y. A. , Mendes , A. , Madeira , L. M. and Nunes , S. P. 2005 . Proton electrolyte membrane properties and direct methanol fuel cell performance: I Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes . J. Power Sources , 140 : 34 – 40 .
  • Costamagna , P. , Yang , C. , Bocarsly , A. B. and Srinivasan , S. 2002 . Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C . Electrochimica Acta , 47 : 1023 – 1033 .
  • Yang , C. , Srinivasan , S. , Arico , A. S. , Creti , P. , Baglio , V. and Antonucci , V. 2001 . Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature . Electrochemical and Solid‐State Letters , 4 : A31 – 34 .
  • Bauer , F. and Willert‐Porada , M. 2005 . Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion® composite membranes prepared out of them . J. Power Sources , 145 : 101 – 107 .
  • Si , Y. , Kunz , H. R. and Fenton , J. M. 2004 . Nafion‐teflon‐Zr(HPO4)2 composite membranes for high‐temperature PEMFCs . J. Electrochem. Soc. , 151 : A623 – 631 .
  • Lee , H.‐K. , Kim , J.‐I. , Park , J.‐H. and Lee , T.‐H. 2004 . A study on self‐humidifying PEMFC using Pt‐ZrP‐nafion composite membrane . Electrochimica Acta , 50 : 761 – 768 .
  • Silva , V. , Weisshaar , S. , Reissner , R. , Ruffmann , B. , Vetter , S. , Mendes , A. , Madeira , L. and Nunes , S. 2005 . Performance and efficiency of a DMFC using non‐fluorinated composite membranes operating at low/medium temperatures . J. Power Sources , 145 : 485 – 494 .
  • Kim , Y.‐T. , Song , M.‐K. , Kim , K.‐H. , Park , S.‐B. , Min , S.‐K. and Rhee , H.‐W. 2004 . Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs . Electrochimica Acta , 50 : 645 – 648 .
  • Park , Y. S. , Hatae , T. , Itoh , H. , Jang , M. Y. and Yamazaki , Y. 2004 . High proton‐conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells . Electrochimica Acta , 50 : 595 – 599 .
  • Park , Y.‐S. and Yamazaki , Y. 2005 . Low methanol permeable and high proton‐conducting Nafion/calcium phosphate composite membrane for DMFC . Solid State Ionics , 176 : 1079 – 1089 .
  • Park , Y.‐S. and Yamazaki , Y. 2005 . Low water uptake content and low water/methanol transport in CP/Nafion hybrid membrane with high non‐hydrogen bonding . J. Membrane Science , 261 : 58 – 66 .
  • Zaidi , S. M.J. and Rahman , S. U. 2005 . Perfluorinated ionomer‐boron phosphate composite membranes for polymer electrolyte membrane fuel cell applications . J. Electrochem. Soc. , 152 : A1590 – 1594 .
  • Malhotra , S. and Datta , R. 1997 . Membrane‐supported nonvolatile acidic electrolytes allow higher temperature operation of proton‐exchange membrane fuel cells . J. Electrochem. Soc. , 144 : L23 – 26 .
  • Herring , A. M. , Cleghorn , S. , McCormick , R. L. and Turner , J. A. 2005 . Unpublished Results ,
  • Savadogo , O. 1998 . Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems . Journal of New Materials for Electrochemical Systems , 1 : 47 – 66 .
  • Tazi , B. and Savadogo , O. 2000 . Parameters of PEM fuel‐cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene . Electrochimica Acta , 45 : 4329 – 4339 .
  • Tazi , B. and Savadogo , O. 2001 . Effect of various heteropolyacids (hpas) on the characteristics of Nafion HPAs membranes and their H2/O2 polymer electrolyte fuel cell parameters . J. New Materials for Electrochemical Systems , 4 : 187 – 196 .
  • Dimitrova , P. , Friedrich , K. A. , Stimming , U. and Vogt , B. 2002 . Modified nafion®‐based membranes for use in direct methanol fuel cells . Solid State Ionics , 150 : 115 – 122 .
  • Meng , F. , Dec , S. F. , Willimason , D. , Frey , M. H. , Hamrock , S. J. , Turner , J. A. and Herring , A. M. 2006 . “Spectroscopic and SAXS studies of heteropoly acid‐doped 3M perfluorinated sulfonic acid polymer membranes” . In Proton Exchange Membrane Fuel Cells v, in Honor of Subramaniam Srinivasan. Electrochemical Society Transactions Edited by: Narayanan , S. R. , Bock , C. , Fuller , Mukerjee S. , Lamy , C. , Stuve , E. and Weidner , J. Vol. 1 , In press
  • Ramani , V. , Kunz , H. R. and Fenton , J. M. 2004 . Investigation of Nafion®/HPA composite membranes for high temperature/low relative humidity PEMFC operation . J. Membrane Science , 232 : 31 – 44 .
  • Ramani , V. , Kunz , H. R. and Fenton , J. M. 2005 . Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation . Electrochimica Acta , 50 : 1181 – 1187 .
  • Ramani , V. , Kunz , H. R. and Fenton , J. M. 2005 . Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation . J. Power Sources , 152 : 182 – 188 .
  • Ramani , V. , Kunz , H. R. and Fenton , J. M. 2005 . Effect of particle size reduction on the conductivity of Nafion®/phosphotungstic acid composite membranes . J. Membrane Science , 266 : 110 – 114 .
  • Bonville , L. J. , Kunz , H. R. , Song , Y. , Mientek , A. , Williams , M. , Ching , A. and Fenton , J. M. 2005 . Development and demonstration of a higher temperature PEM fuel cell stack . J. Power Sources , 144 : 107 – 112 .
  • Li , M. , Shao , Z.‐G. , Zhang , H. , Zhang , Y. , Zhu , X. and Yi , B. 2006 . Self‐humidifying Cs2.5H0.5PW12O40/Nafion/PTFE composite membrane for proton exchange membrane fuel cells . Electrochemical and Solid‐State Letters , 9 : A92 – 95 .
  • Staiti , P. , Freni , S. and Hocevar , S. 1999 . Synthesis and characterization of proton‐conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica . J. Power Sources , 79 : 250 – 255 .
  • Xu , W. , Lu , T. , Liu , C. and Xing , W. 2005 . Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells . Electrochimica Acta , 50 : 3280 – 3285 .
  • Shao , Z.‐G. , Joghee , P. and Hsing , I.‐M. 2004 . Preparation and characterization of hybrid Nafion‐silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells . J. Membrane Science , 229 : 43 – 51 .
  • Zaidi , S. M.J. , Mikhailenko , S. D. , Robertson , G. P. , Guiver , M. D. and Kaliaguine , S. 2000 . Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications . J. Membrane Science , 173 : 17 – 34 .
  • Kim , Y. S. , Wang , F. , Hickner , M. , Zawodzinski , T. A. and McGrath , J. E. 2003 . Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications . J. Membrane Science , 212 : 263 – 282 .
  • Zhang , H. , Pang , J. H. , Wang , D. , Li , A. , Li , X. and Jiang , Z. 2005 . Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes . J. Membrane Science , 264 : 56 – 64 .
  • Smitha , B. , Sridhar , S. and Kha , A. A. 2005 . Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications . J. Polymer Science Part B: Polymer Physics , 43 : 1538 – 1547 .
  • Honma , I. , Takeda , Y. and Bae , J. M. 1999 . Protonic conducting properties of sol‐gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules . Solid State Ionics , 120 : 255 – 264 .
  • Park , Y.‐I. and Nagai , M. 2001 . Proton‐conducting properties of inorganic‐organic nanocomposites proton‐exchange nanocomposite membranes based on 3‐glycidoxypropyltrimethoxysilane and tetraethylorthosilicate . J. Electrochem. Soc. , 148 : A616 – 623 .
  • Honma , I. , Nomura , S. and Nakajima , H. 2001 . Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane . J. Membrane Science , 185 : 83 – 94 .
  • Nakajima , H. , Nomura , S. , Sugimoto , T. , Nishikawa , S. and Honma , I. 2002 . High temperature proton conducting organic/inorganic nanohybrids for polymer electrolyte membrane part II . J. Electrochem. Soc. , 149 : A953 – 958 .
  • Kim , J.‐D. and Honma , I. 2004 . Synthesis and proton conducting properties of zirconia bridged hydrocarbon/phosphotungstic acid hybrid materials . Electrochimica Acta , 49 : 3179 – 3183 .
  • Pern , F. J. , Turner , J. A. , Meng , F. and Herring , A. M. 2006 . “Sol‐gel SiO2‐polymer hybrid heteropoly acid‐based proton exchange membranes” . In The Hydrogen Cycle—Generation, Storage, and Fuel Cells Proceedings of the Materials Research Society Edited by: Dillon , A. C.O. and Ohi. , Filiou C. Vol. 855 , in press
  • Pern , F. J. , Turner , J. A. and Herring , A. M. 2004 . “Hybrid proton‐carrier polymer composites for high‐temperature FCPEM applications” . In Nanostructured Materials in Alternative Energy Devices, Proceedings of the Materials Research Society Edited by: Leite , E. R. , J.‐M. , T. , Chiang , Y.‐M. and Kelder , E. M. Vol. 822 , 159
  • Lavrencic Stangar , U. , Orel , B. , Vince , J. , Jovanovski , V. , Spreizer , H. , Surca Vuk , A. and Hocevar , S. 2005 . Silicotungstic acid/organically modified silane proton‐conducting membranes . J. Solid State Electrochemistry , 9 : 106 – 113 .
  • Aparicio , M. , Castro , Y. and Duran , A. 2005 . Synthesis and characterisation of proton conducting styrene‐co‐methacrylate‐silica sol‐gel membranes containing tungstophosphoric acid . Solid State Ionics , 176 : 333 – 340 .
  • Wu , Q. , Wang , H. , Yin , C. and Meng , G. 2001 . Preparation and performance of PVA films composited with 12‐tungstogermanic heteropoly acid . Mater. Lett. , 50 : 61 – 65 .
  • Cui , Y. , Mao , J. and Wu , Q. 2004 . Preparation and conductivity of polyvinyl alcohol (PVA) films composited with molybdotungstovanadogermanic heteropoly acid . Materials Chemistry and Physics , 85 : 416 – 419 .
  • Feng , W. , Wang , J. and Wu , Q. 2005 . Preparation and conductivity of pva films composited with decatungstomolybdovanadogermanic heteropoly acid . Materials Chemistry and Physics , 93 : 31 – 34 .
  • He , R. , Li , Q. , Xiao , G. and Bjerrum , N. J. 2003 . Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors . J. Membrane Science , 226 : 169 – 184 .
  • Jang , M. Y. and Yamazaki , Y. 2004 . Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells . Solid State Ionics , 167 : 107 – 112 .
  • Zaidi , S. M.J. 2005 . Preparation and characterization of composite membranes using blends of speek/pbi with boron phosphate . Electrochimica Acta , 50 : 4771 – 4777 .
  • Staiti , P. , Minutoli , M. and Hocevar , S. 2000 . Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application . J. Power Sources , 90 : 231 – 235 .
  • Staiti , P. 2001 . Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole . Mater. Lett. , 47 : 241 – 246 .
  • Staiti , P. 2001 . Proton conductive membranes constituted of silicotungstic acid anchored to silica‐polybenzimidazole matrices . J. New Materials for Materials for Electrochemical Systems , 4 : 181 – 186 .
  • Gomez‐Romero , P. , Asensio , J. A. and Borros , S. 2005 . Hybrid proton‐conducting membranes for polymer electrolyte fuel cells: Phosphomolybdic acid doped poly(2,5‐benzimidazole)–(ABPI‐H3PMo12O40) . Electrochimica Acta , 50 : 4715 – 4720 .
  • Asensio , J. A. and Gómez‐Romero , P. 2005 . Recent developments on proton conducting poly(2,5‐benzimidazole) (ABPI) membranes for high temperature polymer electrolyte membrane fuel cells . Fuel Cells , 5 : 336 – 343 .
  • Sweikart , M. A. , Herring , A. M. , Turner , J. A. , Williamson , D. L. , McCloskey , B. D. , Boonrueng , S. R. and Sanchez , M. 2005 . 12‐tungstophosphoric acid composites with sulfonated or unsulfonated epoxies for high‐temperature PEMFCs . J. Electrochem. Soc. , 152 : A98 – 103 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.