199
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Stress–Strain Dependence of Segmented Polyurethanes and Polyurethane Ureas

&
Pages 365-380 | Received 13 Nov 2014, Accepted 22 Dec 2014, Published online: 24 Mar 2015

Reference

  • Prisacariu, C. Polyurethane Elastomers from Morphology to Mechanical Aspects. Wien, NewYork: Springer-Verlag, 2011.
  • Thomson, T. Polyurethanes as Specialty Chemicals: Principles and Applications; Boca Raton: CRC Press, 2005.
  • Oprea, S. Structure and properties of cross-linked polyurethane copolymers. Adv. Polym. Techn. 2009, 28, 165.
  • Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications; Hoboken, New Jersey: John Wiley & Sons, 2003.
  • Lodge, T.P. Block copolymers: Past successes and future challenges. Macromol. Chem. Phys. 2003, 204, 265.
  • Laity, P.R.; Taylor, J.E.; Wong, S.S., Khunkamchoo, P.; Cable, M.; Andrews, G. T.; Johnson, A. F.; Cameron, R. E. Morphological changes in thermoplastic polyurethanes during heating. J. Appl. Polym. Sci. 2006, 100, 779.
  • Krol, P.; Pilch-Pitera, B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers. J. Appl. Polym. Sci. 2007, 104, 1464.
  • Rosthausler, J.W.; Haider, K.W.; Steinlein, C., Eisenbach, C.D. Mechanical and dynamic mechanical properties of polyurethane and polyurethane/polyurea elastomers based on 4,4′-Diisocyanatodicyclohexyl methane. J. Appl. Polym. Sci. 1997, 64, 957.
  • Yeh, F.; Hsiao, B.S.; Sauer, B.B.; Michel, S.; Siesler H. W. In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer. Macromolecules. 2003, 36, 1940.
  • Korley, L.T.J; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer. 2006, 47, 3073.
  • Lee, D.; Tsai, H. Properties of segmented polyurethanes derived from different diisocyanates. J. Appl. Polym. Sci. 2000, 75, 167.
  • Kim, H.; Lee, T.; Huh, J.; Lee, D. Preparation and properties of segmented thermoplastic polyurethane Elastomers with two different soft segments. J. Appl. Polym. Sci. 1999, 73, 345.
  • Liu, Y.; Wu, C.; C. Pan. Effect of chemical crosslinking on the structure and mechanical properties of polyurethane prepared from copoly(PPO–THF) triols. J. Appl. Polym. Sci. 1998, 67, 2163.
  • Sonnenschein, M.F.; Lysenko, Z.; Brune, D.A.; Wendt, B.L.; Schrock, A.K. Enhancing polyurethane properties via soft segment crystallization Polymer. 2005, 46, 10158.
  • Yi, J.; Boyce, M.C.; Lee, G.F.; Balizer, E. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes Polymer. 2006, 47, 319.
  • Furukawa, M.; Komiya, M.; Yokoyama T. Characterization of polyurethane network elastomers. Angew. Makromol. Chem. 1996, 240, 205.
  • Laity, P.R.; Taylor, J.E.; Wong, S.S.; Khunkamchoo, P.; Norris, K.; Cable, M.; Chohan, V.; Andrews, G.T.; Johnson, A. F.; Cameron, R.E. Mechanical deformation of polyurethanes. J. Macromol. Sci., Part B, Phys. 2004, 43, 95.
  • Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer. 2006, 47, 3073.
  • Meissner, B.; Spirkova, M. Potential of recent rubber-elasticity theories for describing the tensile stress–strain dependences of two-phase polymer networks. Macromol. Symp. 2002, 181, 289.
  • Laity, P.R.; Taylor, J.E.; Wong, S.S.; Khunkamchoo, P.; Cable, M.; Andrews, G.T.; Johnson, A.F.; Cameron, R.E. The effect of polyurethane composition and processing history on mechanical properties. J. Macromol. Sci., Part B, Phys. 2005, 44, 261.
  • Spathis, G.D. Polyurethane elastomers studied by the Mooney–Rivlin equation for rubbers J. Appl. Polym. Sci. 1991, 43, 613.
  • Mueller, H.K.; Knauss, W.G. The fracture energy and some mechanical properties of a polyurethane elastomer. Trans. Soc. Rheol. 1971. 15, 217.
  • Kontou, E.; Spathis, G.; Niaounakis, M.; Kefalas, V. Physical and chemical cross-linking effects in polyurethane elastomers. Coll. Polym. Sci. 1990, 268, 636.
  • Ishihara, H.; Kimura, I.; Ishihara, M. Studies on segmented polyurethane—urea elastomers: Structure of segmented polyurethane—urea based on poly(tetramethylene glycol), 4,4’-diphenylmethane diisocyanate, and 4,4′-diaminodiphenylmethane. J. Macromol. Sci., Part B., Phys. 1983, 22, 713.
  • Macocinschi, D.; Filip, D.; Vlad, S.; Cristea, M.; Butnaru, M. Segmented biopolyurethanes for medical applications. J. Mater. Sci. Mater. Med. 2009, 20, 1659.
  • Ishihara, H. Studies on segmented polyurethane—urea elastomers: Structure and properties of segmented polyurethane—ureas having the binary hard segment components. J. Macromol. Sci., Part B., Phys. 1983, 22, 763.
  • Krakovsky, I.; Plestil, J.; Ilavsky, M.; Dusek, K. Structure and elasticity of polyurethane networks based on poly(butadiene) diol, 4,4′-diphenylmethane diisocyanate and poly(oxypropylene) triol. Polymer 1993, 34, 3437.
  • Tereshatov, V.V.; Makarova, M.A.; Senichev, V.Yu.; Slobodinyuk, A.I. Interrelationship between ultimate mechanical properties of variously structured polyurethanes and poly(urethane urea)s and stretching rate thereof. Coll. Polym. Sci. 2012, 290, 641.
  • Tereshatov, V.V.; Makarova, M.A.; Senichev, V.Yu.; Volkova, E.R., Vnutskikh, Zh.A., Slobodinyuk, A.I. The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers. Coll. Polym. Sci. 2015, 293, 153.
  • Kojio, K.; Furukawa, M.; Nonaka, Y.; Nakamura, S. Control of mechanical properties of thermoplastic polyurethane elastomers by restriction of crystallization of soft segment. Materials 2010, 3, 5097.
  • Tereshatov, V.V.; Senichev, V.Yu. Stress–strain behavior of cross-linked polybutadiene urethanes. Polym. Sci. 1995, 37A, 702.
  • Tereshatov, V.V.; Senichev, V.Y. Stress–strain dependence of cross-linked single-phase polyether urethane. J. Macromol. Sci., Part B., Phys. 2014, 53, 575.
  • Qi, H. J.; Boyce, M.C. Stress–Strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817.
  • Kun-San, C.; Yu, T.L., Yung-Sin, C.; Tsang-Lang, L.; Wen-Jiun, L. Soft and hard-segment phase segregation of polyester-based polyurethane. J. Polym. Res. 2001, 8, 99.
  • Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 2006, 47, 3073.
  • Sun, X.; Ni, X. Block copolymer of trans-polyisoprene and urethane uegment: crystallization behavior and morphology. J. Appl. Polym. Sci. 2004, 94, 2286.
  • Ginzburg, V.V.; Bicerano, J.; Christenson, C.P.; Schrock, A.K.; Patashinski, A.Z. Theoretical Modeling of the relationship between Young's modulus and formulation variables for segmented polyurethanes. J. Polym. Sci. Polym. Phys. 2007, 45, 2123.
  • Prisacariu, C.; Scortanu, E.; Buckley, C.P. Hard segment inelastic effects on the stress–strain response of polyurethane elastomers based on hard segments of variable geometry Int. J. Polym. Anal. Charact. 2009, 14, 527.
  • Sheth, J.P.; Wilkes, G.L.; Fornof, A. R.; Long, T.E.; Yilgor, I. Probing the hard segment phase connectivity and percolation in model segmented poly(urethane urea) copolymers. Macromolecules. 2005, 38, 5681.
  • Estes, G.M.; Seymour, R.W.; Cooper, S.L. Infrared studies of segmented polyurethane elastomers. II. infrared dichroism. Macromolecules. 1971, 4, 452.
  • Harrell, L.L. Segmented polyurethans. Properties as a function of segment size and distribution. Macromolecules. 1969, 2, 607.
  • Tereshatov, V.V.; Tereshatova, E.N.; Volkova, E.R. Two types of physical networks in cross-linked segmented polyurethanes. Vysokomolekulyarnye Soedineniya, Seriya A 1995, 37, 1881 [in Russian]. English translation: Polym. Sci. 1995, 37A, 1157.
  • Tereshatov, V.V. Variation of network parameters in segmented polyurethanes induced by tensile drawing. Vysokomolekulyarnye soedineniya, Seriya A, 1995, 37, 1529 [in Russian]. English translation: Polym. Sci. A. 1995, 37, 946.
  • Cluff, E.F.; Gladding, E.K.; Pariser, R. A new method for measuring the degree of crosslinking in elastomers. J. Polym. Sci. 1960, 45, 341.
  • Xia, Z.; Patchan, M.; Maranchi, J.; Elisseeff, J.; Trexler, M. Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J. Appl. Polym. Sci. 2013, 127, 4537.
  • Ginzburg, V.V.; Bicerano, J.; Christenson, C.P.; Schrock, A.K.; Patashinski, A.Z. Modeling mechanical properties of segmented Polyurethanes. In Nano- and micromechanics of polymer blends and composites; Karge-Kocsis J. and Fakirov S. (eds.). Munich, Carl Hanser Verlag, 2009.
  • Simo J.C. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comp. Meth. Appl. Mech. Eng. 1987, 60, 153.
  • Govindjee, S.; Simo, J.C. Mullins’ effect and the strain amplitude dependence of the storage modulus. Int. J. Sol. Struct. 1992, 29, 1737.
  • Holzapfel, G.A. On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Num. Meth. Eng. 1996, 39, 3909.
  • Kaliske, M.; Rothert, H. Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comp. Mech. 1997, 19, 228.
  • Lion, A. A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation. Cont. Mech. Therm. 1996, 8, 153.
  • Sidoroff, F. Un modele viscoelastique non lineaire avec configuration intermediaire. J. Mech. 1974, 13, 679.
  • Suwannachit, A.; Nackenhorst, U. On the constitutive modeling of reinforced rubber in a broad frequency domain. Zeit. Angew. Math. Mech. 2010, 90, 418.
  • Meissner, B.; Mateika, L. Description of the tensile stress–strain behavior of filler-reinforced rubber-like networks using a Langevin-theory-based approach. Part I. Polymer. 2000, 41, 7749.
  • Cohen A. A Pade approximant to the inverse Langevin function. Rheol. Acta. 1991. 30, 270.
  • Itskov, M.; Dargazany, R.; Hörnes, K. Taylor expansion of the inverse function with application to the Langevin function. Math. Mech. Sol. 2012, 17, 693.
  • Christenson, E.M.; Anderson, J.M.; Hiltner, A.; Baer, E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer. 2005, 46, 11744.
  • Edwards S.F.; Vilgis Th. The effect of entanglements in rubber elasticity. Polymer. 1986, 27, 483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.