230
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Isothermal Crystallization of Isotactic Polypropylene Nucleated with a Novel Aromatic Heterocyclic Phosphate Nucleating Agent

, , &
Pages 811-820 | Received 09 Oct 2016, Accepted 19 Sep 2017, Published online: 03 Nov 2017

References

  • Zhang, N.; Zhang, Q.; Wang, K.; Deng, H.; Fu., Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J. Therm. Anal. Calorim. 2012, 107, 733–743. https://doi.org/10.1007/s10973-011-1637-z.
  • Zhang, Y.-F.; Luo, X.-Z.; Yang, X.-J.; Chang, Y. Effects of α/β compound nucleating agents on mechanical properties and crystallization behaviors of isotactic polypropylene. J. Macromol. Sci., Part B, Phys. 2012, 51, 2352–2360. https://doi.org/10.1080/00222348.2012.674833.
  • Torre, J.; Cortazar, M.; omez, M.-A.-G.; Marco, C.; Ellis, G.; Riekel, C.; Dumas, P. Nature of the crystalline interphase in Sheared iPP/Vectra fiber model composites by microfocus X-ray diffraction and IR microspectroscopy using synchrotronradiation. Macromolecules. 2006, 39, 5564–5568. https://doi.org/10.1021/ma060760f.
  • Zhang, Y.-F.; Zhou, P.-Z.; Guo, L.-H.; Hou, H.-H. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid. Polym. Sci. 2017, 295 (4), 619–626. https://doi.org/10.1007/s00396-017-4030-z.
  • Xu, T.; Wang, Y.; He, D.; Xu, Y.; Li, Q.; Shen, C. Nucleation effect of layered metalphosphonate on crystallization of isotactic polypropylene. Polym. Test. 2014, 34, 131–139. https://doi.org/10.1016/j.polymertesting.2014.01.010.
  • Zhang, Y.-F.; Li, X.; Wei, X.-S. Isothermal crystallization behaviors of isotactic polypropylene nucleated with nucleating agent bicyclic [2,2,1] heptane di-carboxylate. J. Macromol. Sci., Part B, Phys. 2009, 48, 1125–1131. https://doi.org/10.1080/00222340903275693.
  • Zhang, Y.-F. Comparison of Nucleation effects of organic phosphorous and sorbitol derivative nucleating agents in isotactic polypropylene. J. Macromol. Sci., Part B, Phys. 2008, 47, 1188–1196. https://doi.org/10.1080/00222340802119414%2010.1080/00222340802403412.
  • Zhao, S.-C.; Xin, Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 653–665. https://doi.org/10.1002/polb.21935.
  • Wei, Z.-Y.; Zhang, W.-X.; Chen, G.-Y., et al. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J. Therm. Anal. Cal. 2010, 102, 775–783. https://doi.org/10.1007/s10973-010-0725-9.
  • Zhang, Y.-F.; Chen, H.; Liu, B.-B.; Gu, Y.; Li., X.-X. Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochim. Acta. 2014, 590, 226–231. https://doi.org/10.1016/j.tca.2014.07.007.
  • Fanegas, N.; Gómez, M.-A.; Marco, C.; Jimenez, I.; Ellis, G. Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer. 2007, 48, 5324–5331. https://doi.org/10.1016/j.polymer.2007.07.004.
  • Zhang, Y.-F.; Li, D.; Chen, Q.-J. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid. Polym. Sci. 2017, 295 (10), 1973–1982. https://doi.org/10.1007/s00396-017-4176-8.
  • Zhang, Y.-F.; Xin, Z. Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J. Appl. Polym. Sci. 2006, 101, 3307–3316. https://doi.org/10.1002/app.23883%2010.1002/app.23161.
  • Blomenhofer, M.; Ganzleben, S.; Hanft, D., et al. “Designer” Nucleating Agent for polypropylene. Macromolecules. 2005, 38, 3688–3695. https://doi.org/10.1021/ma0473317.
  • Ferreira, C.-I.; Dal Castel, C.; Oviedo, M.-A.-S.; Mauler, R.-S. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim. Acta. 2013, 553, 40–48. https://doi.org/10.1016/j.tca.2012.11.025.
  • Libster, D.; Aserin, A.; Garti, N. Advanced nucleating agents for polypropylene. Polym. Adv. Technol. 2007, 18, 685–695. https://doi.org/10.1002/pat.970.
  • Lv, Y.; Huang, M.; Kong, Y., et al. Improved thermal oxidation stability of polypropylene films in the presence of β-nucleating agent. Polym. Test. 2013, 32, 179–186. https://doi.org/10.1016/j.polymertesting.2012.10.008.
  • Zhang, Y.-F.; Zhou, P.-Z.; Jiang, Y.-Z.; Yang, X. The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5 – benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim. Acta. 2017, 655, 219–225. https://doi.org/10.1016/j.tca.2017.07.003.
  • Zhao, S.; Yu, X.; Gong, H.; Shi, Y.; Zhou, S. The crystallization behavior of isotactic polypropylene induced by a novel antinucleating agent and its inhibition mechanism of nucleation. Ind. Eng. Chem. Res. 2015, 54, 7650–7657. https://doi.org/10.1021/acs.iecr.5b02003.
  • Gui, Q.-D.; Xin, Z.; Zhu, W.-P.; Dai, G.-C. Effects of an organic phosphorus nucleating agent on crystallization behaviors and mechanical properties of polypropylene. J. Appl. Polym. Sci. 2003, 88, 297–301. https://doi.org/10.1002/app.11708.
  • Timme, A.; Kress, R.; Albuquerque, R.-Q.; Schmidt, H.-W. Phase behavior and mesophase structures of 1,3,5-benzene- and 1,3,5-cyclohexanetricarboxamides: towards an understanding of the losing order at the transition into the isotropic phase. Chem.-Eur. J. 2012, 18, 8329–8339. https://doi.org/10.1002/chem.201103216.
  • Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. https://doi.org/10.1063/1.1750631.
  • Mes, T.; Smulders, M.-M.-J.; Palmans, A.-R.; Meijer, E.-W. Hydrogen-bond engineering in supramolecular polymers: Polarity influence on the self-assembly of benzene-1,3,5-tricarboxamides. Macromolecules. 2010, 43, 1981–1991. https://doi.org/10.1021/ma9026096.
  • Abraham, F.; Ganzleben, S.; Hanft, D.; Smith, P.; Schmidt, H.-W. Synthesis and structure–efficiency relations of 1, 3, 5-benzenetrisamides as nucleating agents and clarifiers for isotactic poly(propylene). Macromol. Chem. Phys. 2010, 211, 171–181. https://doi.org/10.1002/macp.200900409.
  • Zhang, Y.-F. Isothermal Crystallization Behaviors of Isotactic Polypropylene Nucleated with the Third Generation Sorbitol Derivative Nucleating Agents. J. Macromol. Sci., Part B, Phys. 2008, 47, 891–899. https://doi.org/10.1080/00222340802119414%2010.1080/00222340802403412.
  • Ferreira, C.-I.; Dal Castel, C.; Oviedo, M.-A.-S.; Mauler, R.-S. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim. Acta. 2013, 553, 40–48. https://doi.org/10.1016/j.tca.2012.11.025.
  • Androsch, R.; Monami, A.; Kucera, J. Effects of an alpha-phase nucleating agent on the crystallization and kinetics of a polypropylene/ethylene random copolymer at largely different supercooling. J. Cryst. Growth. 2014, 408, 91–96. https://doi.org/10.1016/j.jcrysgro.2014.09.028.
  • Zhang, Y.-F.; Li, X.; Wei, X.-S. Non-isothermal Crystallization Kinetics of Isotactic Polypropylene Nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. J. Therm. Anal. Calorim. 2010, 100, 661–665. https://doi.org/10.1007/s10973-009-0372-1.
  • Zhang, Y.-F.; Xin, Z. Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization and melting behaviors of isotactic polypropylene. J. Appl. Polym. Sci. 2006, 100, 4868–4874. https://doi.org/10.1002/app.23209.
  • Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 1939, 7, 1103–1112. https://doi.org/10.1063/1.1750380.
  • Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. https://doi.org/10.1063/1.1750631.
  • Avrami, M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J. Chem. Phys. 1941, 9, 177–84. https://doi.org/10.1063/1.1750872.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.