157
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Isothermal Crystallization Kinetics of Poly (3-hydroxybutyrate/ Poly(ethylene-co-vinyl acetate) Blends Enhanced by NH4Cl as a Nucleating Agent

&
Pages 518-534 | Received 27 Aug 2018, Accepted 03 Jan 2019, Published online: 01 Apr 2019

References

  • Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging. Express Polym. Lett. 2014, 8, 791–808. doi:10.3144/expresspolymlett.2014.82.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — a Comprehensive Review. Adv. Drug Deliv. Rev 2016, 107, 367–392. doi:10.1016/j.addr.2016.06.012.
  • Williams, C.; Hillmyer, M. Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2008, 48, 1–10. doi:10.1080/15583720701834133.
  • Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. G. Properties and Medical Applications of Polylactic Acid: A Review. Express Polym. Lett. 2015, 9, 435–455. doi:10.3144/expresspolymlett.2015.42.
  • Jayanth, D.; Kumar, P. S.; Nayak, G. C.; Kumar, J. S.; Pal, S. K.; Rajasekar, R. A Review on Biodegradable Polymeric Materials Striving towards the Attainment of Green Environment. J. Polym. Environ. 2018, 26, 838–865. doi:10.1007/s10924-017-0985-6.
  • Tanadchangsaeng, N. Structure, Chemomechanical Properties and Degradability of Polyhydroxyalkanoates: A Review. Bull. Heal. Sci. Technol 2014, 12, 9–21.
  • Pan, Y.; Farmahini-Farahani, M.; O’Hearn, P.; Xiao, H.; Ocampo, H. An Overview of Bio-Based Polymers for Packaging Materials. J. Bioresour. Bioprod 2016, 1, 106–113.
  • Soroudi, A.; Jakubowicz, I. Recycling of Bioplastics, Their Blends and Biocomposites: A Review. Eur. Polym. J. 2013, 49, 2839–2858.
  • Gruji, R.; Vujadinovi, D.; Savanovi, D. Advances in Applications of Industrial Biomaterials; Pellicer, E., Nikolic, D., Sort, J., Baró, M., Zivic, F., Grujovic, N., Grujic, R., Pelemis, S., Eds.; Springer International Publishing: Cham, 2017; ISBN 978-3-319-62766-3.
  • Luef, K. P.; Stelzer, F.; Wiesbrock, F. Poly(Hydroxy Alkanoate)s in Medical Applications. Chem. Biochem. Eng. Q 2015, 29, 287–297. doi:10.15255/CABEQ.2014.2261.
  • Mitomo, H.; Barham, P. J.; Keller, A. Crystallization and Morphology of Poly(β-Hydroxybutyrate) and Its Copolymer. Polym. J. 1987, 19, 1241–1253. doi:10.1295/polymj.19.1241.
  • Barham, P. J.; Keller, A.; Otun, E. L.; Holmes, P. A. Crystallization and Morphology of a Bacterial Thermoplastic: poly-3-Hydroxybutyrate. J. Mater. Sci. 1984, 19, 2781–2794. doi:10.1007/BF01026954.
  • Barham, P. J. Nucleation Behaviour of Poly-3-Hydroxy-Butyrate. J. Mater. Sci. 1984, 19, 3826–3834. doi:10.1007/BF00980744.
  • Ha, C. Miscibility, Properties, and Biodegradability of Microbial Polyester Containing Blends. Prog. Polym. Sci 2002, 27, 759–809. doi:10.1016/S0079-6700(01)00050-8.
  • El-Taweel, S. H.; Stoll, B.; Höhne, G. W. H.; Mansour, A. A.; Seliger, H. Stress-Strain Behavior of Blends of Bacterial Polyhydroxybutyrate. J. Appl. Polym. Sci. 2004, 94, 2528–2537. doi:10.1002/app.21215.
  • Grassie, N.; Murray, E. J.; Holmes, P. A. The Thermal Degradation of Poly(-(d)-β-Hydroxybutyric Acid): Part 3—the Reaction Mechanism. Polym. Degrad. Stab 1984, 6, 127–134. doi:10.1016/0141-3910(84)90032-6.
  • Organ, S. J.; Li, J.; Terry, A. E.; Barham, P. J. Morphology and Growth of a Hydroxybutyrate Oligomer with 24 Repeat Units. Polymer 2006, 47, 5513–5522. doi:10.1016/j.polymer.2005.02.132.
  • Kai, W.; He, Y.; Inoue, Y. Fast Crystallization of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Talc and Boron Nitride as Nucleating Agents. Polym. Int. 2005, 54, 780–789. doi:10.1002/pi.1758.
  • Puente, J. A. S.; Esposito, A.; Chivrac, F.; Dargent, E. Effect of Boron Nitride as a Nucleating Agent on the Crystallization of Bacterial Poly(3-Hydroxybutyrate). J. Appl. Polym. Sci. 2013, 128, 2586–2594. doi:10.1002/app.38182.
  • Organ, S. J.; Barham, P. J. Nucleation of Poly(Hydroxy Butyrate) by Epitaxy on Nitrogen-Containing Compounds. J. Mater. Sci. 1992, 27, 3239–3242.
  • Jaques, N. G.; Silva, I. D.; dos, S.; Barbosa Neto, M.; da, C.; Diniz, R. K. M.; Wellen, R. M. R.; Canedo, E. L. Comparative Study of the Effect of TiO2 and ZnO on the Crystallization of PHB. Matéria (Rio Janeiro) 2017, 22. doi:10.1590/s1517-707620170004.0214.
  • El-Taweel, S.; Al-Ahmadi, A.; Alhaddad, O.; Okasha, R. Cationic Cyclopentadienyliron Complex as a Novel and Successful Nucleating Agent on the Crystallization Behavior of the Biodegradable PHB Polymer. Molecules 2018, 23, 2703. doi:10.3390/molecules23102703.
  • Pan, P.; Liang, Z.; Nakamura, N.; Miyagawa, T.; Inoue, Y. Uracil as Nucleating Agent for Bacterial Poly[(3-Hydroxybutyrate)- co -(3-Hydroxyhexanoate)] Copolymers. Macromol. Biosci. 2009, 9, 585–595. doi:10.1002/mabi.200800294.
  • Jacquel, N.; Tajima, K.; Nakamura, N.; Miyagawa, T.; Pan, P.; Inoue, Y. Effect of Orotic Acid as a Nucleating Agent on the Crystallization of Bacterial Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Copolymers. J. Appl. Polym. Sci. 2009, 114, 1287–1294. doi:10.1002/app.30587.
  • Pan, P.; Shan, G.; Bao, Y.; Weng, Z. Crystallization Kinetics of Bacterial Poly(3-Hydroxylbutyrate) Copolyesters with Cyanuric Acid as a Nucleating Agent. J. Appl. Polym. Sci 2013, 129, 1374–1382.
  • Xu, P.; Feng, Y.; Ma, P.; Chen, Y.; Dong, W.; Chen, M. Crystallization Behaviours of Bacterially Synthesized Poly(Hydroxyalkanoate)s in the Presence of Oxalamide Compounds with Different Configurations. Int. J. Biol. Macromol 2017, 104, 624–630. doi:10.1016/j.ijbiomac.2017.06.001.
  • La Mantia, F. P.; Morreale, M.; Botta, L.; Mistretta, M. C.; Ceraulo, M.; Scaffaro, R. Degradation of Polymer Blends: A Brief Review. Polym. Degrad. Stab 2017, 145, 79–92. doi:10.1016/j.polymdegradstab.2017.07.011.
  • Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoates: biological Polyesters. Prog. Polym. Sci 2000, 25, 1503–1555. doi:10.1016/S0079-6700(00)00035-6.
  • Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The Chemomechanical Properties of Microbial Polyhydroxyalkanoates. Prog. Polym. Sci 2014, 39, 397–442. doi:10.1016/j.progpolymsci.2013.06.008.
  • Prud’homme, R. E. Crystallization and Morphology of Ultrathin Films of Homopolymers and Polymer Blends. Prog. Polym. Sci 2016, 54–55, 214–231. doi:10.1016/j.progpolymsci.2015.11.001.
  • Schultz, J. M. On Nucleation in Miscible Polymer Blends. Polymer 2017, 108, 301–304. doi:10.1016/j.polymer.2016.11.054.
  • Qiu, Z.; Ikehara, T.; Nishi, T. Miscibility and Crystallization Behaviour of Biodegradable Blends of Two Aliphatic Polyesters. Poly(3-Hydroxybutyrate-co-Hydroxyvalerate) and Poly(Butylene Succinate) Blends. Polymer 2003, 44, 7519–7527. doi:10.1016/j.polymer.2003.09.029.
  • El-Taweel, S. H.; Höhne, G. W. H.; Mansour, A. A.; Stoll, B.; Seliger, H. Glass Transition and the Rigid Amorphous Phase in Semicrystalline Blends of Bacterial Polyhydroxybutyrate PHB with Low Molecular Mass Atactic R, S-PHB-Diol. Polymer 2004, 45, 983–992. doi:10.1016/j.polymer.2003.12.007.
  • El-Taweel, S. H. H.; Stoll, B. Spherulitic Growth Rate of Blends of Polyhydroxybutyrate (PHB) with Oligomeric Atactic PHB-Diol. J. Macromol. Sci. Part B Phys 2012, 51, 567–579. doi:10.1080/00222348.2011.609781.
  • El-Taweel, S. H.; Stoll, B.; Schick, C. Crystallization Kinetics and Miscibility of Blends of Polyhydroxybutyrate (PHB) with Ethylene Vinyl Acetate Copolymers (EVA. ). E-Polymers 2011, 11, 1–16.
  • Gassner, F.; Owen, A. On the Physical Properties of BIOPOL/Ethylene-Vinyl Acetate Blends. Polymer 1992, 33, 2508–2512. doi:10.1016/0032-3861(92)91131-K.
  • El-Taweel, S. H. H.; Khater, M. Mechanical and Thermal Behavior of Blends of Poly(Hydroxybutyrate-co-Hydroxyvalerate) with Ethylene Vinyl Acetate Copolymer. J. Macromol. Sci. Part B, Phys 2015, 54, 1225–1232. doi:10.1080/00222348.2015.1085274.
  • Avrami, M. Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei. J. Chem. Phys 1940, 8, 212–224. doi:10.1063/1.1750631.
  • Hoffman, J. D.; Lauritzen, J. I.; Passaglia, E.; Ross, G. S.; Frolen, L. J.; Weeks, J. J. Kinetics of Polymer Crystallization from Solution and the Melt. Kolloid-Zuzpolymere. 1969, 231, 564–592. doi:10.1007/BF01500015.
  • Kasper, M. G. W. H. HÖhne, W.F. Hemminger, H.-J. Flammersheim: Differential Scanning Calorimetry. Anal. Bioanal. Chem. 2004, 380, 366–367. doi:10.1007/s00216-004-2814-8.
  • Yu, H.; Qin, Z.; Zhou, Z. Cellulose Nanocrystals as Green Fillers to Improve Crystallization and Hydrophilic Property of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Prog. Nat. Sci. Mater. Int. 2011, 21, 478–484. doi:10.1016/S1002-0071(12)60086-0.
  • Vyazovkin, S. Isoconversional Kinetics of Polymers: The Decade past. Macromol. Rapid Commun. 2017, 38, 1600615–1600636. doi:10.1002/marc.201600615.
  • Barham, P. J.; Barker, P.; Organ, S. J. Physical Properties of Poly(Hydroxybutyrate) and Copolymers of Hydroxybutyrate and Hydroxyvalerate. FEMS Microbiol. Lett 1992, 103, 280–298. doi:10.1111/j.1574-6968.1992.tb05850.x.
  • Wei, L.; McDonald, A. G. Thermophysical Properties of Bacterial Poly(3-Hydroxybutyrate): Characterized by TMA, DSC, and TMDSC. J. Appl. Polym. Sci 2015, 132, 42412–42423.
  • Wei, L.; Liang, S.; McDonald, A. G. Thermophysical Properties and Biodegradation Behavior of Green Composites Made from Polyhydroxybutyrate and Potato Peel Waste Fermentation Residue. Ind. Crops Prod 2015, 69, 91–103. doi:10.1016/j.indcrop.2015.02.011.
  • Mansour, A. A.; Saad, G. R.; Hamed, A. H. II. Dielectric Investigation of Cold Crystallization of Poly(3- Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Polymer 1999, 40, 5377–5391. doi:10.1016/S0032-3861(98)00741-1.
  • Shan, G.-F.; Gong, X.; Chen, W.-P.; Chen, L.; Zhu, M.-F. Effect of Multi-Walled Carbon Nanotubes on Crystallization Behavior of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014. doi:10.1007/s00396-011-2412-1.
  • Lan, C.; Sun, Y. Influence of the Surface Properties of Nano-Silica on the Dispersion and Isothermal Crystallization Kinetics of PHB/Silica Nanocomposites. Mater. Chem. Phys 2017, 199, 88–97. doi:10.1016/j.matchemphys.2017.06.044.
  • Cebe, P.; Hong, S. D. Crystallization Behaviour of Poly(Ether-Ether-Ketone). Polymer 1986, 27, 1183–1192. doi:10.1016/0032-3861(86)90006-6.
  • Vyazovkin, S.; Dranca, I. Isoconversional Analysis of Combined Melt and Glass Crystallization Data. Macromol. Chem. Phys. 2006, 207, 20–25. doi:10.1002/macp.200500419.
  • Weihua, K.; He, Y.; Asakawa, N.; Inoue, Y. Effect of Lignin Particles as a Nucleating Agent on Crystallization of Poly(3-Hydroxybutyrate). J. Appl. Polym. Sci. 2004, 94, 2466–2474. doi:10.1002/app.21204.
  • Chen, Z. Y.; Hu, Z. X.; Xiang, H. X.; Chen, W.; Ni, Z. G.; Zhu, M. F. Crystallization Behavior of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with WS2 as Nucleating Agent. Msf. 2017, 898, 2239–2245. doi:10.4028/www.scientific.net/MSF.898.2239.
  • Chan, T. W.; Isayev, A. I. Quiescent Polymer Crystallization: Modelling and Measurements. Polym. Eng. Sci. 1994, 34, 461–471. doi:10.1002/pen.760340602.
  • Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry; Springer US: Boston, MA, 1976.; pp. 497–614. ISBN 978-1-4684-2664-9.
  • Snyder, C. R.; Marand, H. Effect of Chain Transport in the Secondary Surface Nucleation Based Flux Theory and in the Lauritzen − Hoffman Crystal Growth Rate Formalism. Macromolecules 1997, 30, 2759–2766. doi:10.1021/ma961633u.
  • D’Amico, D. A.; Cyras, V. P.; Manfredi, L. B. Non-Isothermal Crystallization Kinetics from the Melt of Nanocomposites Based on Poly(3-Hydroxybutyrate) and Modified Clays. Thermochim. Acta 2014, 594, 80–88. doi:10.1016/j.tca.2014.08.023.
  • D’Amico, D. A.; Manfredi, L. B.; Cyras, V. P. Crystallization Behavior of Poly(3-Hydroxybutyrate) Nanocomposites Based on Modified Clays: Effect of Organic Modifiers. Thermochim. Acta 2012, 544, 47–53. doi:10.1016/j.tca.2012.06.012.
  • Lim, J. S.; Noda, I.; Im, S. S. Effects of Metal Ion-Carbonyl Interaction on Miscibility and Crystallization Kinetic of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)/Lightly Ionized PBS. Eur. Polym. J 2008, 44, 1428–1440. doi:10.1016/j.eurpolymj.2008.02.023.
  • Peng, S.; An, Y.; Chen, C.; Fei, B.; Zhuang, Y.; Dong, L. Isothermal Crystallization of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Eur. Polym. J 2003, 39, 1475–1480. doi:10.1016/S0014-3057(03)00014-4.
  • Chang, L.; Woo, E. M. Crystallization of Poly(3-Hydroxybutyrate) with Stereocomplexed Polylactide as Biodegradable Nucleation Agent. Polym. Eng. Sci. 2012, 52, 1413–1419. doi:10.1002/pen.23081.
  • Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional Approach to Evaluating the Hoffman–Lauritzen Parameters(U* andKg) from the Overall Rates of Nonisothermal Crystallization. Macromol. Rapid Commun. 2004, 25, 733–738. doi:10.1002/marc.200300295.
  • Abdel Aziz, M. S.; Saad, G. R.; Naguib, H. F. Non-Isothermal Crystallization Kinetics of Poly(3-Hydroxybutyrate) in Copoly(Ester-Urethane) Nanocomposites Based on Poly(3-Hydroxybutyrate) and Cloisite 30B. Thermochim. Acta 2015, 605, 52–62. doi:10.1016/j.tca.2015.02.017.
  • Hoffman, J. D. Regime III Crystallization in Melt-Crystallized Polymers: The Variable Cluster Model of Chain Folding. Polymer 1983, 24, 3–26. doi:10.1016/0032-3861(83)90074-5.
  • Puente, J. A. S.; Esposito, A.; Chivrac, F.; Dargent, E. Effects of Size and Specific Surface Area of Boron Nitride Particles on the Crystallization of Bacterial Poly(3-Hydroxybutyrate- co -3-Hydroxyvalerate). Macromol. Symp. 2013, 328, 8–19. doi:10.1002/masy.201350601.
  • Kunioka, M.; Tamaki, A.; Doi, Y. Crystalline and Thermal Properties of Bacterial Copolyesters: Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate). Macromolecules 1989, 22, 694–697. doi:10.1021/ma00192a031.
  • Bordes, P.; Hablot, E.; Pollet, E.; Avérous, L. Effect of Clay Organomodifiers on Degradation of Polyhydroxyalkanoates. Polym. Degrad. Stab 2009, 94, 789–796. doi:10.1016/j.polymdegradstab.2009.01.027.
  • Soudais, Y.; Moga, L.; Blazek, J.; Lemort, F. Coupled DTA–TGA–FT-IR Investigation of Pyrolytic Decomposition of EVA, PVC and Cellulose. J. Anal. Appl. Pyrolysis 2007, 78, 46–57. doi:10.1016/j.jaap.2006.04.005.
  • Hoffendahl, C.; Duquesne, S.; Fontaine, G.; Taschner, F.; Mezger, M.; Bourbigot, S. Decomposition Mechanism of Fire Retarded Ethylene Vinyl Acetate Elastomer (EVA) Containing Aluminum Trihydroxide and Melamine. Polym. Degrad. Stab 2015, 113, 168–179. doi:10.1016/j.polymdegradstab.2014.09.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.