169
Views
1
CrossRef citations to date
0
Altmetric
Articles

A Molecular Dynamics Simulation Study of Amine-Carboxyl Ionic Interactions and Their Distribution in a Polysiloxanes Network

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 844-859 | Received 05 Jun 2022, Accepted 13 Aug 2022, Published online: 02 Sep 2022

References

  • Mavila, S.; Eivgi, O.; Berkovich, I.; Lemcoff, N. G. Intramolecular Cross-Linking Methodologies for the Synthesis of Polymer Nanoparticles. Chem. Rev. 2016, 116, 878–961. DOI: 10.1021/acs.chemrev.5b00290.
  • Zhou, X.; Wang, H.; Li, S.; Liu, M. Synthesis and Application of Self-Healing Elastomers with High Healing Efficiency and Mechanical Properties Based on Multi-Healing Systems. Eur. Polym. J. 2021, 159, 110769. DOI: 10.1016/j.eurpolymj.2021.110769.
  • Zhang, H.; Wang, D.; Wu, N.; Li, C.; Zhu, C.; Zhao, N.; Xu, J. Recyclable, Self-Healing, Thermadapt Triple-Shape Memory Polymers Based on Dual Dynamic Bonds. ACS Appl. Mater. Interfaces 2020, 12, 9833–9841. DOI: 10.1021/acsami.9b22613.
  • Kang, J.; Tok, J. B. H.; Bao, Z. Self-Healing Soft Electronics. Nat. Electron. 2019, 2, 144–150. DOI: 10.1038/s41928-019-0235-0.
  • Yang, C.; Yin, J.; Chen, Z.; Du, H.; Tian, M.; Zhang, M.; Zheng, J.; Lan, D.; Zhang, P.; Zhang, X.; Deng, K. Highly Conductive, Stretchable, Adhesive, and Self‐Healing Polymer Hydrogels for Strain and Pressure Sensor. Macromol. Mater. Eng. 2020, 305, 2000479. DOI: 10.1002/mame.202000479.
  • Lai, J.; Jia, X.; Wang, D.; Deng, Y.; Zheng, P.; Li, C.; Zuo, J.; Bao, Z. Thermodynamically Stable Whilst Kinetically Labile Coordination Bonds Lead to Strong and Tough Self-Healing Polymers. Nat. Commun. 2019, 10, 1–9. DOI: 10.1038/s41467-019-09130-z..
  • Li, Y.; Li, W.; Sun, A.; Jing, M.; Liu, X.; Wei, L.; Wu, K.; Fu, Q. A Self-Reinforcing and Self-Healing Elastomer with High Strength, Unprecedented Toughness and Room-Temperature Reparability. Mater. Horiz. 2021, 8, 267–275. DOI: 10.1039/D0MH01447H.
  • Wang, X.; Liang, D.; Cheng, B. Preparation and Research of Intrinsic Self-Healing Elastomers Based on Hydrogen and Ionic Bond. Compos. Sci. Technol. 2020, 193, 108127. DOI: 10.1016/j.compscitech.2020.108127.
  • Fan, T.; Chen, G.; Xie, H.; Su, B.; He, M. Highly Transparent, Self-Healing Conductive Elastomers Enabled by Synergistic Hydrogen Bonding Interactions. Chem. Eng. J. 2020, 393, 124685. DOI: 10.1016/j.cej.2020.124685..
  • Du, R.; Xu, Z.; Zhu, C.; Jiang, Y.; Yan, H.; Wu, H.; Vardoulis, O.; Cai, Y.; Zhu, X.; Bao, Z.; et al. A Highly Stretchable and Self‐Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Adv. Funct. Mater. 2020, 30, 1907139–1907139. DOI: 10.1002/adfm.201907139.
  • Zhou, Z.; Chen, S.; Xu, X.; Chen, Y.; Xu, L.; Zeng, Y.; Zhang, F. Room Temperature Self-Healing Crosslinked Elastomer Constructed by Dynamic Urea Bond and Hydrogen Bond. Prog. Org. Coat. 2021, 154, 106213. DOI: 10.1016/j.porgcoat.2021.106213.
  • Mo, J.; Wu, W.; Shan, S.; Wu, X.; Li, D.; Li, R.; Lin, L.; Zhang, A. A Systematic Study on Zn (II)-Iminocarboxyl Complexation Applied in Supramolecular PDMS Networks. Polymer 2022, 250, 124896. DOI: 10.1016/j.polymer.2022.124896.
  • Li, H.; Wu, H.; Li, B.; Gao, Y.; Zhao, X.; Zhang, L. Molecular Dynamics Simulation of Fracture Mechanism in the Double Interpenetrated Cross-Linked Polymer. Polymer 2020, 199, 122571. DOI: 10.1016/j.polymer.2020.122571.
  • Lukasheva, N. V.; Tolmachev, D. A.; Nazarychev, V. M.; Kenny, J. M.; Lyulin, S. V. Influence of Specific Intermolecular Interactions on the Thermal and Dielectric Properties of Bulk Polymers: Atomistic Molecular Dynamics Simulations of Nylon 6. Soft Matter 2017, 13, 474–485. DOI: 10.1039/c6sm02169g.
  • Zhang, Z.; Wang, Y.; Liu, P.; Chen, T.; Hou, G.; Xu, L.; Wang, X.; Hu, Z.; Liu, J.; Zhang, L. Quantitatively Predicting the Mechanical Behavior of Elastomers via Fully Atomistic Molecular Dynamics Simulation. Polymer 2021, 223, 123704. DOI: 10.1016/j.polymer.2021.123704.
  • Chen, X.; Shen, Z.; Jia, H.; Gao, Y.; Zhang, M.; Luo, Y.; Luo, Z. Understanding the Self‐Healing Mechanism of Polyurethane Elastomer Based on Hydrogen Bonding Interactions through Molecular Dynamics Simulation. Macromol. Theory Simul. 2022, 31, 2100051. DOI: 10.1002/mats.202100051.
  • Chen, J.; Li, F.; Luo, Y.; Shi, Y.; Ma, X.; Zhang, M.; Boukhvalov, D. W.; Luo, Z. A Self-Healing Elastomer Based on an Intrinsic Non-Covalent Cross-Linking Mechanism. J. Mater. Chem. A 2019, 7, 15207–15214. DOI: 10.1039/C9TA03775F.
  • Ren, Z.; Guo, R.; Bi, H.; Jia, X.; Xu, M.; Cai, L. Interfacial Adhesion of Polylactic Acid on Cellulose Surface: A Molecular Dynamics Study. ACS Appl. Mater. Interfaces 2020, 12, 3236–3244. DOI: 10.1021/acsami.9b20101.
  • Li, W.; Ma, J.; Wu, S.; Zhang, J.; Cheng, J. The Effect of Hydrogen Bond on the Thermal and Mechanical Properties of Furan Epoxy Resins: Molecular Dynamics Simulation Study. Polym. Test. 2021, 101, 107275. DOI: 10.1016/j.polymertesting.2021.107275.
  • Li, L.; Xu, X.; Song, P.; Cao, Q.; Qiao, X.; Xu, Z.; Yang, Y.; Zuo, C.; Wang, H. Insights into the Hydrogen-Bond Cross-Linking Effects of Small Multiamine Molecules on Physical and Mechanical Properties of Poly(Vinly Alcohol) by Molecular Dynamics Simulations. Model. Simul. Mater. Sci. Eng. 2021, 29, 035012. DOI: 10.1088/1361-651X/abe0aa.
  • Zhou, R.; Gao, W.; Xia, L.; Wu, H.; Guo, S. The Study of Damping Property and Mechanism of Thermoplastic Polyurethane/Phenolic Resin through a Combined Experiment and Molecular Dynamics Simulation. J. Mater. Sci. 2018, 53, 9350–9362. DOI: 10.1007/s10853-018-2218-3.
  • Chen, X.; Zhu, J.; Luo, Y.; Chen, J.; Ma, X.; Bukhvalov, D.; Liu, H.; Zhang, M.; Luo, Z. Molecular Dynamics Simulation Insight into the Temperature Dependence and Healing Mechanism of an Intrinsic Self-Healing Polyurethane Elastomer. Phys. Chem. Chem. Phys. 2020, 22, 17620–17631. DOI: 10.1039/D0CP03013A.
  • Mo, J.; Chen, X.; Fu, Y.; Li, R.; Lin, Y.; Zhang, A. A Solvent-Free, Transparent, Self-Healing Polysiloxanes Elastomer Based on Unsaturated Carboxyl-Amino Ionic Hydrogen Bonds. Polymer 2021, 228, 123903. DOI: 10.1016/j.polymer.2021.123903.
  • Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. DOI: 10.1002/jcc.21224.
  • Martínez, J. M.; Martínez, L. Packing Optimization for Automated Generation of Complex System’s Initial Configurations for Molecular Dynamics and Docking. J. Comput. Chem. 2003, 24, 819–825. DOI: 10.1002/jcc.10216.
  • Neese, F. The ORCA Program System. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. DOI: 10.1002/wcms.81..
  • Neese, F. Software Update: The Orca Program System, Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327. DOI: 10.1002/wcms.1327.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. DOI: 10.1002/jcc.22885.
  • Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. DOI: 10.1021/ja9621760.
  • Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474–6487. DOI: 10.1021/jp003919d.
  • Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. DOI: 10.1063/1.2408420.
  • Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. DOI: 10.1063/1.448118.
  • Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. DOI: 10.1063/1.470117.
  • Berendsen, H. J.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. DOI: 10.1016/0010-4655(95)00042-E.
  • Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. DOI: 10.1021/ct700301q.
  • Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25. DOI: 10.1016/j.softx.2015.06.001.
  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. DOI: 10.1016/0263-7855(96)00018-5.
  • Zhu, J.; Zhao, X.; Liu, L.; Yang, R.; Song, M.; Wu, S. Thermodynamic Analyses of the Hydrogen Bond Dissociation Reaction and Their Effects on Damping and Compatibility Capacities of Polar Small Molecule/Nitrile-Butadiene Rubber Systems: Molecular Simulation and Experimental Study. Polymer 2018, 155, 152–167. DOI: 10.1016/j.polymer.2018.09.040.
  • Yashiro, K.; Ito, T.; Tomita, Y. Molecular Dynamics Simulation of Deformation Behavior in Amorphous Polymer: Nucleation of Chain Entanglements and Network Structure under Uniaxial Tension. Int. J. Mech. Sci. 2003, 45, 1863–1876. DOI: 10.1016/j.ijmecsci.2003.11.001.
  • Nazarychev, V. M.; Lyulin, A. V.; Larin, S. V.; Gurtovenko, A. A.; Kenny, J. M.; Lyulin, S. V. Molecular Dynamics Simulations of Uniaxial Deformation of Thermoplastic Polyimides. Soft Matter 2016, 12, 3972–3981. DOI: 10.1039/c6sm00230g.
  • Ward, I. M.; Sweeney, J. Mechanical Properties of Solid Polymers. John Wiley & Sons: NJ, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.