59
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ultrahigh Low-Temperature Toughness of Polypropylene Composites with Low Ductile-Brittle Transition Temperature by Introducing Traces of Needlelike Wollastonite

, , &
Pages 1186-1201 | Received 07 Sep 2022, Accepted 17 Oct 2022, Published online: 29 Nov 2022

References

  • Luo, F.; Geng, C.; Wang, K.; Deng, H.; Chen, F.; Fu, Q.; Na, B. New Understanding in Tuning Toughness of β-Polypropylene: The Role of β-Nucleated Crystalline Morphology. Macromolecules 2009, 42, 9325–9331. DOI: 10.1021/ma901651f.
  • Xu, J.; Howard, M. J.; Mittal, V.; Bates, F. S. Block Copolymer Micelle Toughened Isotactic Polypropylene. Macromolecules 2017, 50, 6421–6432. DOI: 10.1021/acs.macromol.7b01656.
  • Lin, Y.; Chen, H.; Chan, C.; Wu, J. High Impact Toughness Polypropylene/CaCO3 Nanocomposites and the Toughening Mechanism. Macromolecules 2008, 41, 9204–9213. DOI: 10.1021/ma801095d.
  • Xu, J.; Mittal, V.; Bates, F. S. Toughened Isotactic Polypropylene: Phase Behavior and Mechanical Properties of Blends with Strategically Designed Random Copolymer Modifiers. Macromolecules 2016, 49, 6497–6506. DOI: 10.1021/acs.macromol.6b01521.
  • Keith, H. D.; Padden, F. J.; Walter, N. M.; Wyckoff, H. W. Evidence for a Second Crystal Form of Polypropylene. J. Appl. Phys. 1959, 30, 1485–1488. DOI: 10.1063/1.1734986.
  • Varga, J. β-Modification of Isotactic Polypropylene: preparation, Structure, Procession, Properties, and Application. J. Macromol. Sci., Part B, Phys. 2002, 41, 1121–1171. DOI: 10.1081/MB-120013089.
  • Grein, C.; Plummer, C. J. G.; Kausch, H. H.; Germain, Y.; Béguelin, P. Influence of β Nucleation on the Mechanical Properties of Isotactic Polypropylene and Rubber Modified Isotactic Polypropylene. Polymer 2002, 43, 3279–3293. DOI: 10.1016/S0032-3861(02)00135-0.
  • Kotek, J.; Ščudla, J.; Šlouf, M.; Raab, M. Combined Effect of Specific Nucleation and Rubber Dispersion on Morphology and Mechanical Behavior of Isotactic Polypropylene. J. Appl. Polym. Sci. 2007, 103, 3539–3546. DOI: 10.1002/app.24426.
  • Zhang, C.; Xia, L.; Lyu, P.; Wang, Y.; Li, C.; Xiao, X.; Dai, F.; Xu, W.; Liu, X.; Deng, B. Is It Possible to Fabricate a Nanocomposite with Excellent Mechanical Property Using Unmodified Inorganic Nanoparticles Directly? ACS Appl. Mater Interfaces 2018, 10, 15357–15363. DOI: 10.1021/acsami.8b04288.
  • Blond, D.; Barron, V.; Ruether, M.; Ryan, K. P.; Nicolosi, V.; Blau, W. J.; Coleman, J. N. Enhancement of Modulus, Strength, and Toughness in Poly(Methyl Methacrylate)-Based Composites by the Incorporation of Poly(Methyl Methacrylate)-Functionalized Nanotubes. Adv. Funct. Mater. 2006, 16, 1608–1614. DOI: 10.1002/adfm.200500855.
  • Zamani, M. M.; Fereidoon, A.; Sabet, A. Multi-Walled Carbon Nanotube-Filled Polypropylene Nanocomposites: high Velocity Impact Response and Mechanical Properties. Iran Polym. J. 2012, 21, 887–894. DOI: 10.1007/s13726-012-0097-z.
  • Lin, C. W.; Huang, L. C.; Ma, C. C. M.; Yang, A. C. M.; Lin, C. J.; Lin, L. J. Nanoplastic Flows of Glassy Polymer Chains Interacting with Multiwalled Carbon Nanotubes in Nanocomposites. Macromolecules 2008, 41, 4978–4988. DOI: 10.1021/ma702342z.
  • Sun, D.; Lei, Y.; Lu, Y.; Cao, S.; Qi, X.; Wang, Y. Fabrication of Super-Toughened Polypropylene-Based Nanocomposite with Low Elastomer Content through Tailoring the Microscale Damage Mechanisms. Compos. Sci. Technol. 2020, 193, 108148. DOI: 10.1016/j.compscitech.2020.108148.
  • van der Wal, A.; Mulder, J. J.; Oderkerk, J.; Gaymans, R. J. Polypropylene–Rubber Blends: 1. The Effect of the Matrix Properties on the Impact Behaviour. Polymer 1998, 39, 6781–6787. DOI: 10.1016/S0032-3861(98)00170-0.
  • Huang, J. J.; Keskkula, H.; Paul, D. R. Comparison of the Toughening Behavior of Nylon 6 versus an Amorphous Polyamide Using Various Maleated Elastomers. Polymer 2006, 47, 639–651. DOI: 10.1016/j.polymer.2005.11.088.
  • Niu, H.; Wang, N.; Li, Y. Influence of β-Nucleating Agent Dispersion on the Crystallization Behavior of Isotactic Polypropylene. Polymer 2018, 150, 371–379. DOI: 10.1016/j.polymer.2018.07.030.
  • Zhao, S.; Cai, Z.; Xin, Z. A Highly Active Novel β-Nucleating Agent for Isotactic Polypropylene. Polymer 2008, 49, 2745–2754. DOI: 10.1016/j.polymer.2008.04.012.
  • Bai, H.; Wang, Y.; Zhang, D.; Xiao, C.; Song, B.; Li, Y.; Han, L. Fracture Studies of Poly(Propylene)/Elastomer Blend with β-Form Nucleating Agent. Mater. Sci. Eng.: A 2009, 513-514, 22–31. DOI: 10.1016/j.msea.2009.02.051.
  • Xu, X.; Li, X.; Jin, B.; Sheng, Q.; Wang, T.; Zhang, J. Influence of Morphology Evolution on the Mechanical Properties of Beta Nucleated Isotactic Polypropylene in Presence of Polypropylene Random Copolymer. Polym. Test 2016, 51, 13–19. DOI: 10.1016/j.polymertesting.2016.02.005.
  • Ren, Q.; Fan, J.; Zhang, Q.; Yi, J.; Feng, J. Toughened Polypropylene Random Copolymer with Olefin Block Copolymer. Mater. Design 2016, 107, 295–301. DOI: 10.1016/j.matdes.2016.06.052.
  • Jin, J.; Du, J.; Chen, H.; Han, C. C. Fluctuation-Assisted Nucleation in the Phase Separation/Crystallization of iPP/OBC Blends. Polymer 2011, 52, 6161–6172. DOI: 10.1016/j.polymer.2011.11.005.
  • Wang, C.; Su, J. X.; Li, J.; Yang, H.; Zhang, Q.; Du, R. N.; Fu, Q. Phase Morphology and Toughening Mechanism of Polyamide 6/EPDM-g-MA Blends Obtained via Dynamic Packing Injection Molding. Polymer 2006, 47, 3197–3206. DOI: 10.1016/j.polymer.2006.03.012.
  • Tiwari, R. R.; Paul, D. R. Polypropylene-Elastomer (TPO) Nanocomposites: 1. Morphology. Polymer 2011, 52, 4955–4969. DOI: 10.1016/j.polymer.2011.08.019.
  • Qiu, B.; Chen, F.; Shangguan, Y.; Lin, Y.; Zheng, Q.; Wang, X. Toughening Mechanism in Impact Polypropylene Copolymer Containing a β-Nucleating Agent. RSC Adv. 2016, 6, 23117–23125. DOI: 10.1039/C6RA01046F.
  • Huang, L.; Kiyofuji, G.; Matsumoto, J.; Fukagawa, Y.; Gong, C.; Nojima, S. Isothermal Crystallization of Poly(β-Propiolactone) Blocks Starting from Lamellar Microdomain Structures of Double Crystalline Poly(β-Propiolactone)-Block-Polyethylene Copolymers. Polymer 2012, 53, 5856–5863. DOI: 10.1016/j.polymer.2012.10.013.
  • Gao, Y.; Ren, K.; Ning, N.; Fu, Q.; Wang, K.; Zhang, Q. Stretching-Induced Interfacial Crystalline Structures and Relevant Mechanical Properties in Melt-Spun Polypropylene/Whisker Composite Fibers. Polymer 2012, 53, 2792–2801. DOI: 10.1016/j.polymer.2012.04.020.
  • van der Wal, A.; Gaymans, R. J. Polypropylene–Rubber Blends: 3. The Effect of the Test Speed on the Fracture Behaviour. Polymer 1999, 40, 6045–6055. DOI: 10.1016/S0032-3861(99)00214-1.
  • Wang, F.; Du, H.; Liu, H.; Zhang, Y.; Zhang, X.; Zhang, J. The Synergistic Effects of β-Nucleating Agent and Ethylene–Octene Copolymer on Toughening Isotactic Polypropylene. Polym. Test 2015, 45, 1–11. DOI: 10.1016/j.polymertesting.2015.04.014.
  • Bai, H.; Wang, Y.; Liu, L.; Zhang, J.; Han, L. Nonisothermal Crystallization Behaviors of Polypropylene with α/β Nucleating Agents. J. Polym. Sci. B Polym. Phys. 2008, 46, 1853–1867. DOI: 10.1002/polb.21520.
  • Bai, H.; Wang, Y.; Song, B.; Han, L. Synergistic Toughening Effects of Nucleating Agent and Ethylene–Octene Copolymer on Polypropylene. J. Appl. Polym. Sci. 2008, 108, 3270–3280. DOI: 10.1002/app.27980.
  • Yang, H.; Zhang, X.; Qu, C.; Li, B.; Zhang, L.; Zhang, Q.; Fu, Q. Largely Improved Toughness of PP/EPDM Blends by Adding nano-SiO2 Particles. Polymer 2007, 48, 860–869. DOI: 10.1016/j.polymer.2006.12.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.