78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and Characterization of Novel Polymeric-Sepiolite Composite Resin for Effective Water Softening: Applications in Batch and Column Adsorption

, , &
Pages 1213-1233 | Received 05 Nov 2021, Accepted 07 Nov 2022, Published online: 07 Dec 2022

References

  • Idriss, I. E.; Abdel-Azim, M.; Karar, K. I.; Osman, S.; Idris, A. M. Isotopic and Chemical Facies for Assessing the Shallow Water Table Aquifer Quality in Goly Region, White Nile State, Sudan: Focusing on Nitrate Source Apportionment and Human Health Risk. Toxin Rev. 2021, 40, 764–776. DOI: 10.1080/15569543.2020.1775255.
  • Liu, W.; Singh, R. P.; Jothivel, S.; Fu, D. Evaluation of Groundwater Hardness Removal Using Activated Clinoptilolite. Environ. Sci. Pollut. Res. Int. 2020, 27, 17541–17549. DOI: 10.1007/s11356-019-06193-9.
  • World Health Organization. Hardness in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. World Health Organization: Geneva, Switzerland, 2010.
  • Inspectorate, D. W. Water Hardness. Northern Ireland Environment Agency: Belfast, United Kingdom, 1999.
  • Ebrahim, A. M.; Alnajjar, A. O.; Mohammed, M. E.; Idris, A. M.; Mohammed, M. E.; Michalke, B. Investigation of Total Zinc Contents and Zinc-Protein Profile in Medicinal Plants Traditionally Used for Diabetes Treatment. Biometals 2020, 33, 65–74. DOI: 10.1007/s10534-019-00230-3.
  • McNally, N. J.; Williams, H. C.; Phillips, D. R.; Smallman-Raynor, M.; Lewis, S.; Venn, A.; Britton, J. Atopic Eczema and Domestic Water Hardness. Lancet 1998, 352, 527–531. DOI: 10.1016/S0140-6736(98)01402-0.
  • Chaumont, A.; Voisin, C.; Sardella, A.; Bernard, A. Interactions between Domestic Water Hardness, Infant Swimming and Atopy in the Development of Childhood Eczema. Environ. Res. 2012, 116, 52–57. DOI: 10.1016/j.envres.2012.04.013.
  • Panhwar, A. H.; Kazi, T. G.; Afridi, H. I.; Shaikh, H. R.; Arain, S. A.; Arain, S. S.; Brahman, K. D. Evaluation of Calcium and Magnesium in Scalp Hair Samples of Population Consuming Different Drinking Water: Risk of Kidney Stone. Biol. Trace Elem. Res. 2013, 156, 67–73. DOI: 10.1007/s12011-013-9850-1.
  • Lethea, L. Impact of Water Hardness on Energy Consumption of Geyser Heating Elements. WSA. 2017, 43, 614–625. DOI: 10.4314/wsa.v43i4.09.
  • Oh, S. J.; Kim, N.; Lee, Y. T. Preparation and Characterization of PVDF/TiO2 Organic–Inorganic Composite Membranes for Fouling Resistance Improvement. J. Membr. Sci. 2009, 345, 13–20. DOI: 10.1016/j.memsci.2009.08.003.
  • Malanova, N. V.; Korobochkin, V. V.; Кosintsev, V. I. The Application of Ammonium Hydroxide and Sodium Hydroxide for Reagent Softening of Water. Procedia Chem. 2014, 10, 162–167. DOI: 10.1016/j.proche.2014.10.028.
  • Apell, J. N.; Boyer, T. H. Combined Ion Exchange Treatment for Removal of Dissolved Organic Matter and Hardness. Water Res. 2010, 44, 2419–2430. DOI: 10.1016/j.watres.2010.01.004.
  • Izadpanah, A. A.; Javidnia, A. The Ability of a Nanofiltration Membrane to Remove Hardness and Ions from Diluted Seawater. Water 2012, 4, 283–294. DOI: 10.3390/w4020283.
  • Mustapha, S.; Ndamitso, M.; Mohammed, U.; Adeosun, N.; Idris, M. Study on Activated from Melon (Citrullus lanatus) Husk as Natural Adsorbent for Removal of Hardness in Water. Adv. Anal. Chem. 2016, 6, 1–9. DOI: 10.5923/j.aac.20160601.01.
  • Rolence, C.; Machunda, R. L.; Njau, K. N. Water Hardness Removal by Coconut Shell Activated Carbon. IJSTS. 2014, 2, 97–102. DOI: 10.11648/j.ijsts.20140205.11.
  • Zeppenfeld, K. Electrochemical Removal of Calcium and Magnesium Ions from Aqueous Solutions. Desalination 2011, 277, 99–105. DOI: 10.1016/j.desal.2011.04.005.
  • Uddin, M. K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Bibiano-Cruz, L.; Garfias, J.; Salas-García, J.; Martel, R.; Llanos, H. Batch and Column Test Analyses for Hardness Removal Using Natural and Homoionic Clinoptilolite: Breakthrough Experiments and Modeling. Sustain. Water Resour. Manage. 2016, 2, 183–197. DOI: 10.1007/s40899-016-0050-y.
  • Melichová, Z.; Hromada, L. Adsorption of Pb2+ and Cu2+ Ions from Aqueous Solutions on Natural Bentonite. Pol. J. Environ. Stud. 2013, 22, 457–464.
  • Galan, E. Properties and Applications of Palygorskite-Sepiolite Clays. Clay Miner. 1996, 31, 443–453. DOI: 10.1180/claymin.1996.031.4.01.
  • Fu, R.; Yang, Y.; Xu, Z.; Zhang, X.; Guo, X.; Bi, D. The Removal of Chromium (VI) and Lead (II) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI). Chemosphere 2015, 138, 726–734. DOI: 10.1016/j.chemosphere.2015.07.051.
  • Fayazi, M. Facile Hydrothermal Synthesis of Magnetic Sepiolite Clay for Removal of Pb(II) from Aqueous Solutions. Anal. Bioanal. Chem. Res. 2019, 6, 125–136. DOI: 10.22036/abcr.2018.141470.1227.
  • Rytwo, G.; Tropp, D.; Serban, C. Adsorption of Diquat, Paraquat and Methyl Green on Sepiolite: experimental Results and Model Calculations. Appl. Clay Sci. 2002, 20, 273–282. DOI: 10.1016/S0169-1317(01)00068-0.
  • Alghamdi, M. M.; El-Zahhar, A. A.; Idris, A. M.; Said, T. O.; Sahlabji, T.; El Nemr, A. Synthesis, Characterization, and Application of a Novel Polymeric-Bentonite-Magnetite Composite Resin for Water Softening. Sep. Purif. Technol. 2019, 224, 356–365. DOI: 10.1016/j.seppur.2019.05.037.
  • Sada, K.; Kokado, K.; Furukawa, Y. Polyacrylonitrile (PAN). In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin, 2015; pp. 1745–1750.
  • Idris, A. M.; Said, T. O.; Brima, E. I.; Sahlabji, T.; Alghamdi, M. M.; El-Zahhar, A. A.; Arshad, M.; Nemr, A. E. Assessment of Contents of Selected Heavy Metals in Street Dust from Khamees-Mushait City, Saudi Arabia Using Multivariate Statistical Analysis, GIS Mapping, Geochemical Indices and Health Risk. Fresen. Environ. Bull. 2019, 28, 6059–6069. https://www.prt-parlar.de/download_feb_2019/.
  • Ali, I. H.; Siddeeg, S. M.; Idris, A. M.; Brima, E. I.; Ibrahim, K. A.; Ebraheem, S. A.; Arshad, M. Contamination and Human Health Risk Assessment of Heavy Metals in Soil of a Municipal Solid Waste Dumpsite in Khamees-Mushait, Saudi Arabia. Toxin Rev. 2021, 40, 102–115. DOI: 10.1080/15569543.2018.1564144.
  • Idris, A. M.; Alqahtani, F. M.; Said, T. O.; Fawy, K. F. Contamination Level and Risk Assessment of Heavy Metal Deposited in Street Dusts in Khamees-Mushait City, Saudi Arabia. Hum. Ecol. Risk. Assess. 2020, 26, 495–511. DOI: 10.1080/10807039.2018.1520596.
  • Vogel, A. I.; Svehla, G. Vogel’s Qualitative Inorganic Analysis; Longman Scientific & Technical: London, England, 1996.
  • Weber, T. W.; Chakravorti, R. K. Pore and Solid Diffusion Models for Fixed Bed Adsorbers. AIChE J. 1974, 20, 228–238. DOI: 10.1002/aic.690200204.
  • Alvani, S.; Hojati, S.; Landi, A. Effects of Sepiolite Nanoparticles on the Kinetics of Pb and Cu Removal from Aqueous Solutions and Their Immobilization in Columns with Different Soil Textures. Geoderma 2019, 350, 19–28. DOI: 10.1016/j.geoderma.2019.05.004.
  • El-Naas, M. H.; Alhaija, M. A.; Al-Zuhair, S. Evaluation of an Activated Carbon Packed Bed for the Adsorption of Phenols from Petroleum Refinery Wastewater. Environ. Sci. Pollut. Res. Int. 2017, 24, 7511–7520. DOI: 10.1007/s11356-017-8469-8.
  • Di Credico, B.; Tagliaro, I.; Cobani, E.; Conzatti, L.; D’Arienzo, M.; Giannini, L.; Mascotto, S.; Scotti, R.; Stagnaro, P.; Tadiello, L. A Green Approach for Preparing High-Loaded Sepiolite/Polymer Biocomposites. Nanomaterials 2018, 9, 46. DOI: 10.3390/nano9010046.
  • Dong, Y. Z.; Piao, S. H.; Choi, H. J. Fe3O4/Sepiolite Magnetic Composite Particles and Their Magneto- Responsive Characteristics. Colloid Polym. Sci. 2018, 296, 11–19. DOI: 10.1007/s00396-017-4221-7.
  • Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. Characterization and 2,4-D Adsorption of Sepiolite Nanofibers Modified by N-Cetylpyridinium Cations. Microporous Mesoporous Mater. 2013, 168, 30–36. DOI: 10.1016/j.micromeso.2012.09.022.
  • Vicente-Rodríguez, M. A.; Suarez, M.; Bañares-Muñoz, M. A.; de Dios Lopez-Gonzalez, J. Comparative FT-IR Study of the Removal of Octahedral Cations and Structural Modifications during Acid Treatment of Several Silicates. Spectrochim. Acta. A 1996, 52, 1685–1694. DOI: 10.1016/S0584-8539(96)01771-0.
  • Fleming, R.; Pardini, L.; Sales, R.; Brito Junior, C.; Alves, N. Extruded Polyacrylonitrile Fiber Stabilization Process Monitored by FT-IR Technique. Paper presented at the V Brazilian Carbon Conference, Rio de Janeiro, Brazil, 25–29 April 2011; pp. 25–29.
  • Sharma, A. L.; Shukla, N.; Thakur, A. K. Studies on Structure Property Relationship in a Polymer–Clay Nanocomposite Film Based on (PAN)8LiClO4. J. Polym. Sci. B Polym. Phys. 2008, 46, 2577–2592. DOI: 10.1002/polb.21583.
  • Marjanović, V.; Lazarević, S.; Janković-Častvan, I.; Jokić, B.; Janaćković, D.; Petrović, R. Adsorption of Chromium(VI) from Aqueous Solutions onto Amine-Functionalized Natural and Acid-Activated Sepiolites. Appl. Clay. Sci. 2013, 80-81, 202–210. DOI: 10.1016/j.clay.2013.04.008.
  • Vicosa, A. L.; Gomes, A. C. O.; Soares, B. G.; Paranhos, C. M. Effect of Sepiolite on the Physical Properties and Swelling Behavior of Rifampicin-Loaded Nanocomposite Hydrogels. Express Polym. Lett. 2009, 3, 518–524. DOI: 10.3144/expresspolymlett.2009.64.
  • Chen, H. X.; Zheng, M. S.; Sun, H. Y.; Jia, Q. M. Characterization and Properties of Sepiolite/Polyurethane Nanocomposites. Mater. Sci. Eng. A 2007, 445-446, 725–730. DOI: 10.1016/j.msea.2006.10.008.
  • Sahoo, P. K.; Biswal, T.; Samal, R. Microwave-Assisted Preparation of Biodegradable Water Absorbent Polyacrylonitrile/Montmorillonite Clay Nanocomposite. J. Nanotechnol. 2011, 2011, 1–11. DOI: 10.1155/2011/143973.
  • Preston, C. M. L.; Amarasinghe, G.; Hopewell, J. L.; Shanks, R. A.; Mathys, Z. Evaluation of Polar Ethylene Copolymers as Fire Retardant Nanocomposite Matrices. Polym. Degrad. Stab. 2004, 84, 533–544. DOI: 10.1016/j.polymdegradstab.2004.02.004.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. C. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces 2019, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Enzyme Immobilization. Biomacromolecules 2016, 17, 615–621. DOI: 10.1021/acs.biomac.5b01542.
  • Keeney, M.; Jiang, X.; Yamane, M.; Lee, M.; Goodman, S.; Yang, F. Nanocoating for Biomolecule Delivery Using Layer-by-Layer Self-Assembly. J. Mater. Chem. B 2015, 3, 8757–8770. DOI: 10.1039/C5TB00450K.
  • Gaaz, T. S.; Kadhum, A. A. H.; Michael, P. K. A.; Al-Amiery, A. A.; Sulong, A. B.; Nassir, M. H.; Jaaz, A. H. Unique Halloysite Nanotubes–Polyvinyl Alcohol–Polyvinylpyrrolidone Composite Complemented with Physico–Chemical Characterization. Polymers 2017, 9, 207. DOI: 10.3390/polym9060207.
  • Farrokhi-Rad, M.; Mohammadalipour, M.; Shahrabi, T. Electrophoretically Deposited Halloysite Nanotubes Coating as the Adsorbent for the Removal of Methylene Blue from Aqueous Solution. J. Eur. Ceram. Soc. 2018, 38, 3650–3659. DOI: 10.1016/j.jeurceramsoc.2018.03.048.
  • Tofighy, M. A.; Mohammadi, T. Permanent Hard Water Softening Using Carbon Nanotube Sheets. Desalination 2011, 268, 208–213. DOI: 10.1016/j.desal.2010.10.028.
  • Aragaw, T. A.; Ayalew, A. A. Removal of Water Hardness Using Zeolite Synthesized from Ethiopian Kaolin by Hydrothermal Method. Water Pract. Technol. 2019, 14, 145–159. DOI: 10.2166/wpt.2018.116.
  • Sepehr, M. N.; Zarrabi, M.; Kazemian, H.; Amrane, A.; Yaghmaian, K.; Ghaffari, H. R. Removal of Hardness Agents, Calcium and Magnesium, by Natural and Alkaline Modified Pumice Stones in Single and Binary Systems. Appl. Surf. Sci. 2013, 274, 295–305. DOI: 10.1016/j.apsusc.2013.03.042.
  • Xiao, S.; Luo, X.; Peng, Q.; Deb, H. Effective Removal of Calcium Ions from Simulated Hard Water Using Electrospun Polyelectrolyte Nanofibrous Mats. Fibers Polym. 2016, 17, 1428–1437. DOI: 10.1007/s12221-016-6440-9.
  • Mohammadian, M.; Sahraei, R.; Ghaemy, M. Synthesis and Fabrication of Antibacterial Hydrogel Beads Based on Modified-Gum Tragacanth/Poly (Vinyl Alcohol)/Ag0 Highly Efficient Sorbent for Hard Water Softening. Chemosphere 2019, 225, 259–269. DOI: 10.1016/j.chemosphere.2019.03.040.
  • Júnior, O. K.; Gurgel; L, L. V. A.; Gil, F. Removal of Ca (II) and Mg (II) from Aqueous Single Metal Solutions by Mercerized Cellulose and Mercerized Sugarcane Bagasse Grafted with EDTA Dianhydride (EDTAD). Carbohydr. Polym. 2010, 79, 184–191. DOI: 10.1016/j.carbpol.2009.07.048.
  • Kannan, D.; Mani, N. Removal of Hardness (Ca2+, Mg2+) and Alkalinity from Ground Water by Low Cost Adsorbent Using Phyllanthus Emblica Wood. IJCPA. 2014, 1, 208–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.