66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Crosslinking on Thermodynamics Interactions and Network Parameters of Terpolymeric Hydrogels

&
Pages 689-717 | Received 27 Jun 2023, Accepted 24 Jul 2023, Published online: 03 Aug 2023

References

  • Kamaliya, B.; Dave, P. N.; Macwan, P. M. Rheological Investigations and Swelling Behaviour of Hydrogels Based on Gum Ghatti-cl-Poly(N-Isopropyl Acrylamide-co-Acrylicacid)/CoFe2O4 Nanoparticles. Polym. Bull. 2023, 80, 6923–6944. DOI: 10.1007/s00289-004403-y.
  • Jain, A.; Bajpai, J.; Bajpai, A. K.; Mishra, A. Thermoresponsive Cryogels of Poly(2-Hydroxyethyl Methacrylate-co-N-Isopropyl Acrylamide) (P(HEMA-co-NIPAM)), Fabrication.; Characterization and Water Sorption Study. Polym. Bull. 2020, 77, 4417–4443. DOI: 10.1007/s00289-019-02971-0.
  • Dharmasiri, M. B.; Mudiyanselage, T. K. Thermo‑Responsive Poly(N‑Isopropyl Acrylamide) Hydrogel with Increased Response Rate. Polym. Bull. 2021, 78, 3183–3198. DOI: 10.1007/s00289-020-03270-9.
  • Xu, X.; Liu, Y.; Fu, W.; Yao, M.; Ding, Z.; Xuan, J.; Li, D.; Wang, S.; Xia, Y.; Cao, M. Poly(N Isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers 2020, 12, 580. DOI: 10.3390/polym12030580.
  • Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels, Design.; Properties and Applications. Prog. Mater. Sci 2021, 115, 100702. DOI: 10.1016/j.pmatsci.2020.100702.
  • Hamcerencu, M.; Desbrieres, J.; Popa, M.; Riess, G. Thermo‑Sensitive Gellan Maleate/N‑Isopropylacrylamide Hydrogels, Initial “in Vitro” and “in Vivo” Evaluation as Ocular Inserts. Polym. Bull. 2020, 77, 741–755. DOI: 10.1007/s00289-019-02772-5.
  • Rafique, N.; Ahmad, M.; Minhas, M. U.; Badshah, S. F.; Malik, N. S.; Khan, K. U. Designing Gelatin‑Based Swellable Hydrogels Systemfor Controlled Delivery of Salbutamol Sulphate,Characterization and Toxicity Evaluation. Polym. Bull. 2022, 79, 4535–4561. DOI: 10.1007/s00289-021-03629-6.
  • Das, S.; Subuddhi, U. Guar Gum–Poly(N‑Isopropylacrylamide) Smart Hydrogels for Sustained Delivery of 5‑Fluorouracil. Polym. Bull. 2019, 76, 2945–2963. DOI: 10.1007/s00289-018-2526-4.
  • Fuchs, S.; Shariati, K.; Ma, M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv. Healthc. Mater. 2020, 9, e1901396. DOI: 10.1002/adhm.201901396.
  • Wang, K.; Hao, Y.; Wang, Y.; Chen, J.; Mao, L.; Deng, Y.; Chen, J.; Yuan, S.; Zhang, T.; Ren, J.; Liao, W. Functional Hydrogels and Their Application in Drug Delivery.; Biosensors.; and Tissue Engineering. Int. J. Polym. Sci. 2019, 2019, 1–14. DOI: 10.1155/2019/3160732.
  • Hoti, G.; Caldera, F.; Cecone, C.; Rubin Pedrazzo, R. A.; Anceschi, A.; Appleton, S. L.; Khazaei, M. Y.; Trotta, F. Effect of theCross-Linking Density on theSwelling and Rheological Behavior of Ester-Bridged _-Cyclodextrin Nanosponges. Materials 2021, 14, 1–20. DOI: 10.3390/ma14030478.
  • Salimi-Kenari, H.; Mollaie, F.; Dashtimoghadam, E.; Imani, M.; Nyström, B. Effects of Chain Length of the Cross-Linking Agent on Rheological and Swelling Characteristics of Dextran Hydrogels. Carbohydr. Polym. 2018, 181, 141–149. DOI: 10.1016/j.carbpol.2017.10.056.
  • Jao, W.-C.; Chen, H.-C.; Lin, C.-H.; Yang, M.-C. The Controlled Release Behavior and pH- Andthermo-Sensitivity of Alginate/Poly(Vinylalcohol) Blended Hydrogels. Polym. Adv. Technol. 2009, 20, 680–688. DOI: 10.1002/pat.1318.
  • Yildiz, Y.; Uyanik, N.; Erbil, C. Compressive Elastic Moduli of Poly(N‐Isopropylacrylamide) Hydrogels Crosslinked with Poly(Dimethyl Siloxane). J. Macro. Sci.; Part A, Pure Appl. Chem. 2006, 43, 1091–1106. DOI: 10.1080/10601320600740322.
  • Caykara, T.; Kiper, S.; Go¨khan Demirel Demirel Network Parameters and Volume Phase TransitionBehavior of Poly(N-Isopropylacrylamide) Hydrogels. J. Appl. Polym. Sci. 2006, 101, 1756–1762. DOI: 10.1002/app.23513.
  • Mah, C. H.; Wu, Q. Y.; Deen, G. R. Effect of Nature of Chemical Crosslinker on Swellingand Solubility Parameter of a New Stimuli-Responsivecationic Poly(N-acryloyl-N-Propyl Piperazine) Hydrogel. Polym. Bull. 2018, 75, 221–238. DOI: 10.1007/s00289-017-2029-8.
  • Çaykara, T.; Bozkaya, U.; Kantoğlu, Ö. Network Structure and Swelling Behavior of Poly(Acrylamide/Crotonic Acid) Hydrogels in Aqueous Salt Solutions. J. Polym. Sci. B Polym. Phys. 2003, 41, 1656–1664. DOI: 10.1002/polb.10500.
  • Wu, S.; Li, H.; Chen, J. P.; Lam, K. Y. Modeling Investigation of Hydrogel Volume Transition. Macromol. Theory Simul. 2004, 13, 13–29. DOI: 10.1002/mats.200300013.
  • Victorov, A.; Radke, C.; Prausnitz, J. Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gel in 1: 1 Salt Solutions. Phys. Chem. Chem. Phys. 2006, 8, 264–278. DOI: 10.1039/B512748C.
  • Huang, Y.; Jin, X.; Liu, H.; Hu, Y. A Molecular Thermodynamic Model for the Swelling of Thermo-Sensitive Hydrogels. Fluid Phase Equilib 2008, 263, 96–101. DOI: 10.1016/j.fluid.2007.10.008.
  • Wallmersperger, T.; Ballhause, D.; Kröplin, B.; Günther, M.; Gerlach, G. Coupled Multi-Field Formulation in Space and Time for the Simulation of Intelligent Hydrogels. J. Intel. Mater. Syst. Struct 2009, 20, 1483–1492. DOI: 10.1177/1045389X09105236.
  • Ricka, J.; Tanaka, T. Swelling of Ionic Gels: Quantitative Performance of the Donnan Theory. Macromolecules 1984, 17, 2916–2921. DOI: 10.1021/ma00142a081.
  • English, A. E.; Mafe, S.; Manzanares, J. A.; Yu, X. H.; Grosberg, A. Y.; Tanaka, T. Equilibrium Swelling Properties of Polyampholytic Hydrogels. J. Chem. Phys.1996 1996, 104, 8713–8720. DOI: 10.1063/1.471560.
  • Hong, W.; Zhao, X. H.; Suo, Z. G. Large Deformation and Electrochemistry of Polyelectrolyte Gels. J. Mech. Phys. Solids 2010, 58, 558–577. DOI: 10.1016/j.jmps.2010.01.005.
  • Shekhar, S.; Mukherjee, M.; Sen, A. K. Synthesis and Characterization of Thermoresponsive Terpolymer for Protein Separation. Int. J. Polym. Mater. Polym. Biomater 2014, 63, 389–397. DOI: 10.1080/00914037.2013.853668.
  • Flory, P. J. Principles of Polymer Chemistry; Cornell University Press, Ithaca.; NY.; USA. 1953, 1, ISBN 0801401348
  • Lopez, C. G.; Richtering, W. Does Flory-Rehner Theory Quantitatively Describe the Swelling of Thermoresposnive Microgels. Soft Matter. 2017, 13, 8271–8280. DOI DOI: 10.1039/C7SM01274H.
  • Flory, P. J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys 1943, 11, 521–526. DOI: 10.1063/1.1723792.
  • Kabra, B. G.; Gehrke, S. H. Synthesis of Fast Response.; Temperature-Sensitive Poly(N-Isopropylacrylamide) Gel. Polym. Commun 1991, 32, 322–323.
  • Matsuo, E. S.; Orkisz, M.; Sun, S. T.; Li, Y.; Tanaka, T. Origin of Structural Inhomogeneities in Polymer Gels. Macromolecules 1994, 27, 6791–6796. DOI: 10.1021/ma00101a018.
  • Gan, L. H.; Deen, G. R.; Gan, Y. Y.; Tam, K. C. Water Sorption Studies of New pH-Responsive N-acryloyl-N’-Methyl Piprazine and Methyl Methacrylate Hydrogels. Eur. Polym. .J 2001, 37, 1413–1478. DOI: 10.1016/S0014-3057(00)00250-0.
  • Flory, P. J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. DOI: 10.1063/1.1723791.
  • Maurer, G.; Prausnitz, J. M. Thermodynamics of Phase Equilibrium for Systems Containing Gels. Fluid Phase Equil. 1996, 115, 113–133. DOI: 10.1016/0378-3812(95)02829-3.
  • Flory, P. J.; Rehner, J. Statistical Mechanics of Swelling of Network Structures. J. Chem. Phys 1950, 18, 108–111. DOI: 10.1063/1.1747424.
  • Flory, P. J.; Rehner, J. Statistical Theory of Chain Configuration and Physical Properties of High Polymers. Ann. N. Y. Acad. Sci. 1943, 44, 419–429. DOI: 10.1111/j.1749-6632.1943.tb52762.x.
  • Valentín, J. L.; Carretero-González, J.; Mora-Barrantes, I.; Chassé, W.; Saalwächter, K. Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber. Macromolecules 2008, 41, 4717–4729. DOI: 10.1021/ma8005087.
  • Quesada-Pérez, M.; Maroto-Centeno, J. A.; Forcada, J.; Hidalgo-Alvarez, R. Gel Swelling Theories, the Classical Formalism and Recent Approaches. Soft Matter 2011, 7, 10536–10547. DOI: 10.1039/c1sm06031g.
  • Urich, M.; Denton, A. R. Swelling.; Structure.; and Phase Stability of Compressible Microgels. Soft Matter. 2016, 12, 9086–9094. DOI: 10.1039/C6SM02056A.
  • Fennell, E.; Huyghe, J. M. Chemically Responsive Hydrogel Deformation Mechanics, a Review. Molecules 2019, 24, 3521. DOI: 10.3390/molecules24193521.
  • Bajpai, S. K.; Singh, S. Analysis of Swelling Behavior of Poly(Methacrylamide-co-Methacrylic Acid) Hydrogels and Effect of Synthesis Conditions on Water Uptake. React. Funct. Polym. 2006, 66, 431–440. DOI: 10.1016/j.reactfunctpolym.2005.09.003.
  • Jovanovic, J.; Adnadjevic, B. Influence of Poly(Acrylic Acid) Xerogel Structure on Swelling Kinetics in Distilled Water. Polym. Bull. 2007, 58, 243–252. DOI: 10.1007/s00289-006-0591-6.
  • Xue, W.; Champ, S.; Huglin, M. B. Network and Swelling Parameters of Chemically Crosslinkedthermoreversible Hydrogels. Polymer 2001, 42, 3665–3669. DOI: 10.1016/S0032-3861(00)00627-3.
  • Castelli, F.; Pitarresi, G.; Giammona, G. Influence of Different Parameters on Drug Release from Hydrogel Systems to Biomembrane Model, Evaluation by Differential Scanning Calorimetry Technique. Biomaterials 2000, 21, 821–833. DOI: 10.1016/s0142-9612(99)00252-5.
  • Patras, G.; Qiao, G. G.; Solomon, D. H. Controlled Formation of Microheterogeneous Polymer Networks, Influence of Monomer Reactivity on Gel Structure. Macromolecules 2001, 34, 6396–6401. DOI: 10.1021/ma010484z.
  • Berens, A. R.; Hopfenberg, H. B. Diffusion and Relaxation Inglassy Polymer Powders, 2. Separation of Diffusion and Relaxation Parameters. Polymer 1978, 19, 489–496. DOI: 10.1016/0032-3861(78)90269-0.
  • Ganji, F.; Farahani, S. V.; Farahani, E. V. Theoretical Description of Hydrogel Swelling, a Review. Iran. Polym. J. 2010, 19, 375–398.
  • Wang, J.; Wu, W.; Lin, Z. Kinetics and Thermodynamics of the Water Sorption of 2-Hydroxyethyl Methacrylate/Styrene Copolymer Hydrogels. J. Appl. Polym. Sci. 2008, 109, 3018–3023. DOI: 10.1002/app.28403.
  • Martínez-Vázquez, N.; Antonio-Cruz, R. d C.; Alvarez-Castillo, A.; Mendoza Martinez, A. M.; Morales-Cepeda, A. B. Swelling Kinetics of Hydrogels from Methyl Cellulose and Poly (Acrylamide). Rev. Mex. Ing. Quim 2007, 6, 337–345.
  • Thakur, A.; Wanchoo, R. K.; Singh, P. Structural Parameters and Swelling Behaviours of pH Sensitive Poly(Acrylamide-co-Acrylic Acid) Hydrogels. Chem. Biochem. Eng. 2011, 25, 181–194.
  • Enscore, D. J.; Hopfenberg, H. B.; Stannett, V. T. Effect of Particle Size on the Mechanism Controlling n-Hexane Sorption in Glassy Polystyrene Microspheres. Polymer 1977, 18, 793–800. DOI: 10.1016/0032-3861(77)90183-5.
  • Bajpai, S. K.; Johnson, S. Superabsorbent Hydrogels for Removal of Divalent Toxic Ions. Part I, Synthesis and Swelling Characterization. React Funct. Polym 2005, 62, 271–283. DOI: 10.1016/j.reactfunctpolym.2005.01.002.
  • Peppas, N. A.; Brazel, C. S. Mechanisms of Solute and Drug Transport in Relaxing.; Swellable.; Hydrophilic Glassy Polymers. Polymer 1999, 40, 3383–3398. DOI: 10.1016/S0032-3861(98)00546-1.
  • Kardag, E.; Saraydin, D. Swelling of Superabsorbent Acrylamide-Sodium Acrylate Hydrogels Prepared Using Multifunctional Crosslinkers. Turk. J. Chem. 2002, 26, 863–875.
  • Peppas, N. A.; Mikos, A. G. Preparation Methods and Structure of Hydrogels. in Peppas, N.A.; (Ed.). Hydrogels in Medicine and Pharmacy. CRC Press: BocaRaton FL 1986; 1, pp. 1–24
  • Tanaka, T.; Fillmore, D. J. Kinetics of Swelling of Gels. J. Chem. Phys 1979, 70, 1214–1218. DOI: 10.1063/1.437602v.
  • Zhihui, L.; Wenhui, W.; Jianquan, W.; Xin, J. Swelling Behaviors.; Tensile Properties and Thermodynamic Interactions in APS/HEMA Copolymeric Hydrogels. Front. Mater. Sci. China 2007, 1, 427–431. DOI: 10.1007/s11706-007-0078-x.
  • Erbil, C.; Y?ld?z, Y. ⏧?; Uyan?k, N. Effects of Synthesis-Solvent Composition and Initiator Concentration on the Swelling Behaviour of Poly(N-Isopropylacrylamide) P(NIPAAM).; Poly(NIPAAM-co-Dimethyl Itaconate).; and Poly(NIPAAM-co Itaconic Acid) Gels. Polym. Int. 2000, 49, 795–800. DOI: 10.1002/1097-0126(200007)49:7 < 795::AID-PI457 > 3.0.CO;2-9.
  • Davis, T. P.; Huglin, M. B. Effect of Composition on Properties of Copolymeric N-Vinyl-2-Pyrrolidone/Methyl Methacrylate Hydrogels and Organogels. Polymer 1990, 31, 513–519. DOI: 10.1016/0032-3861(90)90395-F.
  • Huglin, M. B.; Rehab, M. M. A. M.; Zakaria, M. B. Thermodynamic Interactions in Copolymeric Hydrogels. Macromolecules 1986, 19, 2986–2991. DOI: 10.1021/ma00166a019.
  • Vasheghani-Farahani, E.; Vera, J. H.; Cooper, D. G.; Weber, M. E. Swelling of Ionic Gels in Electrolyte Solutions. Ind. Eng. Chem. Res. 1990, 29, 554–560. DOI: 10.1021/ie00100a010.
  • De, S. K.; Aluru, N. R.; Johnson, B.; Crone, W. C.; Beebe, D. J.; Moore, J. Equilibrium Swelling and Kinetics of pH-Responsive Hydrogels: Models, Experiments, and Simulations. J. Microelectromech. Syst. 2002, 11, 544–555. DOI: 10.1109/JMEMS.2002.803281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.