50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Laser Radiation on the Linear and Nonlinear Optical Characteristics of Polyvinyl Alcohol/Carboxymethyl Cellulose/Nickel Oxide Nanocomposite Films

, , , &
Pages 718-737 | Received 05 Jul 2023, Accepted 01 Aug 2023, Published online: 12 Aug 2023

References

  • Ahmad, A. A.; Alsaad, A. M.; Al-Bataineh, Q. M.; Al-Akhras, M.-A. H.; Albataineh, Z.; Alizzy, K. A.; Daoud, N. S. Synthesis and Characterization of ZnO NPs-Doped PMMA-BDK-MR Polymer-Coated Thin Films with UV Curing for Optical Data Storage Applications. Polym. Bull. 2021, 78, 1189–1211. DOI: 10.1007/s00289-020-03155-x.
  • Alsaad, A. M.; Al-Bataineh, Q. M.; Ahmad, A. A.; Jum’h, I.; Alaqtash, N.; Bani Salameh, A. A. Optical Properties of Transparent PMMA-PS/ZnO NPs Polymeric Nanocomposite Films: UV-Shielding Applications. Mater. Res. Express 2020, 6, 126446. DOI: 10.1088/2053-1591/ab68a0.
  • Jum’h, I.; Mousa, M. S.; Mhawish, M.; Sbeih, S.; Telfah, A. Optical and Structural Properties of (PANI-CSA-PMMA)/NiNPs Nanocomposites Thin Films for Organic Optical Filters. J. Appl. Polym. Sci. 2020, 137, 48643. DOI: 10.1002/app.48643.
  • Chamroukhi, H.; Hamed, Z. B.; Telfah, A.; Bassou, M.; Zeinert, A.; Hergenröder, R.; Bouchriha, H. Optical and Structural Properties Enhancement of Hybrid Nanocomposites Thin Films Based on Polyaniline Doped with Zinc Oxide Embedded in Bimodal Mesoporous Silica (ZnO@SiOx) Nanoparticles. Opt. Mater. 2018, 84, 703–713. DOI: 10.1016/j.optmat.2018.07.041.
  • Sheha, E.; Khoder, H.; Shanap, T. S.; El-Shaarawy, M. G.; El Mansy, M. K. Structure, Dielectric and Optical Properties of p-Type (PVA/CuI) Nanocomposite Polymer Electrolyte for Photovoltaic Cells. Optik 2012, 123, 1161–1166. DOI: 10.1016/j.ijleo.2011.06.066.
  • Virtanen, S.; Vartianen, J.; Setala, H.; Tammelin, T.; Vuoti, S. Modified Nano Fibrillated Cellulose-Polyvinyl Alcohol Films with Improved Mechanical Performance. RSC Adv. 2014, 4, 11343–11350. DOI: 10.1039/c3ra46287k.
  • Zhang, C. H.; Yang, F.; Wang, W.; Chen, B. Preparation and Characterization of Hydrophilic Modification of Polypropylene Non-woven Fabric by Dip-Coating PVA (Polyvinyl Alcohol). Sep. Purif. Technol. 2008, 61, 276–286. DOI: 10.1016/j.seppur.2007.10.019.
  • Abdelaziz, M.; Ghannam, M. Influence of Titanium Chloride Addition on the Optical and Dielectric Properties of PVA Films. Phys. B Condens. Matter 2010, 405, 958–964. DOI: 10.1016/j.physb.2009.10.030.
  • Gad, Y. H.; Ali, H. E.; Hegazy, E. S. A. Radiation-Induced Improving Mechanical and Thermal Properties of Carboxymethyl Cellulose/Clay Composite for Application in Removal of Copper(II) Ions from Wastewater. J. Inorg. Organomet. Polym. 2021, 31, 2083–2094. DOI: 10.1007/s10904-020-01850-w.
  • Pettignano, A.; Charlot, A.; Fleury, E. Solvent-Free Synthesis of Amidated Carboxymethyl Cellulose Derivatives: Effect on the Thermal Properties. Polymers 2019, 11, 1227. DOI: 10.3390/polym11071227.
  • Mazuki, N. F.; Abdul Majeed, A. P. P.; Nagao, Y.; Samsudin, A. S. Studies on Ionics Conduction Properties of Modification CMC-PVA Based Polymer Blend Electrolytes via Impedance Approach. Polym. Test. 2020, 81, 106234. DOI: 10.1016/j.polymertesting.2019.106234.
  • Suppiah, K.; Teh, P. L.; Husseinsyah, S.; Rozyanty, A. R. Properties and Characterization of Carboxymethyl Cellulose/Halloysite Nanotube Bio-Nanocomposite Films: Effect of Sodium Dodecyl Sulfate. Polym. Bull. 2019, 76, 365–386. DOI: 10.1007/s00289-018-2392-0.
  • Prajapati, D. G.; Kandasubramanian, B. Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage. Ind. Eng. Chem. Res. 2019, 58, 10652–10677. DOI: 10.1021/acs.iecr.9b01693.
  • Taleb, M. F.; El-Mohdy, H. L.; El-Rehim, H. A. Radiation Preparation of PVA/CMC Copolymers and Their Application in Removal of Dyes. J. Hazard. Mater. 2009, 168, 68–75. DOI: 10.1016/j.jhazmat.2009.02.001.
  • Ibrahim, M. M.; Koschella, A.; Kadry, G.; Heinze, T. Evaluation of Cellulose and Carboxymethyl Cellulose/Poly(Vinyl Alcohol) Membranes. Carbohydr. Polym. 2013, 95, 414–420. DOI: 10.1016/j.carbpol.2013.03.012.
  • Chahal, R. P.; Mahendia, S.; Tomar, A. K.; Kumar, S. Irradiated PVA/Ag Nanocomposite Films: Materials for Optical Applications. J. Alloys Compd. 2012, 538, 212–219. DOI: 10.1016/j.jallcom.2012.05.085.
  • Nouh, S. A.; Alsobhi, B. O.; Abou Elfadl, A.; Massoud, A. M. Effect of Gamma Irradiation on the Structure, Optical and Thermal Properties of PC PBT/NiO Polymer Nanocomposites Films. J. Inorg. Organomet. Polym. 2017, 27, 1851–1860. DOI: 10.1007/s10904-017-0650-5.
  • Navakoteswara, V.; Ravi, P.; Sathish, M.; Reddy, N. L.; Lee, K.; Sakar, M.; Prathap, P.; Kumari, M. M.; Reddy, K. R.; Nadagouda, M. N.; et al. Monodispersed Core/Shell Nanospheres of ZnS/NiO with Enhanced H2 Generation and Quantum Efficiency at Versatile Photocatalytic Conditions. J. Hazard. Mater. 2021, 413, 125359. DOI: 10.1016/j.jhazmat.2021.125359.
  • Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Dwivedi, J.; Petwal, V. C.; Ganesh, S.; Devendrappa, H. Optical Properties and Ionic Conductivity Studies of an 8 MeV Electron Beam Irradiated Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/LiClO4 Electrolyte Film for Optoelectronic Applications. RSC Adv. 2018, 8, 15297–15309. DOI: 10.1039/C8RA00970H.
  • Nouh, S. A.; Aldawood, S.; Barakat, M. M. E.; Tommalieh, M. J.; Bahareth, R. A. Laser-Induced Changes in the Optical Properties of the Bayfol UV1 7-2 Nuclear Track Detector. Radiat. Eff. Defects Solids 2022, 177, 57–70. DOI: 10.1080/10420150.2022.2049782.
  • Yi-Zhun, M.; Li-Long, P.; Ya-Bin, Z.; Zhi-Guang, W.; Tie-Long, S. Performance Improvements of DSSC with EB Irradiated PAN/PEO Based Gel Electrolyte. Chin. Phys. B 2011, 7, 078104. DOI: 10.11804/NuclPhysRev.28.04.474.
  • Oliveira, V. M.; Ortiz, A. V.; Del Mastro, N. L.; Moura, E. A. B. The Influence of Electron-Beam Irradiation on Some Mechanical Properties of Commercial Multilayer Flexible Packaging Materials. Radiat. Phys. Chem. 2009, 78, 553–555. DOI: 10.1016/j.radphyschem.2009.03.041.
  • Zahedi, S.; Dorranian, D. Effect of Laser Treatment on the Optical Properties of Poly(Methyl Methacrylate) Thin Films. Opt. Rev. 2013, 20, 36–40. DOI: 10.1007/s10043-013-0007-4.
  • Nouh, S. A.; Benthami, K.; Mahrous, E. M.; El-Shamy, N. T.; Barakat, M. M. E. Optical Investigation of the Effect of Laser Radiation on Lignosulfonate–Polyvinyl Alcohol/Nickel Oxide Nanocomposite Membrane. J. Laser Appl. 2023, 35, 022023. DOI: 10.2351/7.0000977.
  • Lutterotti, L. Total Pattern Fitting for the Combined Size–Strain–Stress–Texture Determination in Thin Film Diffraction. Nucl. Instr. Methods B 2010, 268, 334–340. DOI: 10.1016/j.nimb.2009.09.053.
  • El-Mesady, I. A.; Rammah, Y. S.; Abdalla, A. M.; Ghanim, E. H. Gamma Irradiation Effect towards Photoluminescence and Optical Properties of Makrofol DE 6-2. Radiat. Phys. Chem. 2020, 168, 108578. DOI: 10.1016/j.radphyschem.2019.108578.
  • Eisa, W. H.; Zayed, M. F.; Abdel-Moneam, Y. K.; Abou Zeid, A. M. Water-Soluble Gold/Polyaniline Core/Shell Nanocomposite: Synthesis and Characterization. Synth. Met. 2014, 195, 23–28. DOI: 10.1016/j.synthmet.2014.05.012.
  • Rathore, B. S.; Gaur, M. S.; Singh, K. S. Investigation of Optical and Thermally Stimulated Properties of SiO2 Nanoparticles-Filled Polycarbonate. J. Appl. Polym. Sci. 2012, 126, 960–968. DOI: 10.1002/app.37004.
  • Karthikeyan, B.; Hariharan, S.; Mangalaraja, R. V.; Pandiyarajan, T.; Udayabhaskar, R.; Sreekanth, B. Studies on NiO-PVA Composite Films for Opto-Electronics and Optical Limiters. IEEE Photon. Technol. Lett. 2018, 30, 1539–1542. DOI: 10.1109/LPT.2018.2859042.
  • Alhazime, A. A.; Benthami, K. A.; Alsobhi, B. O.; Ali, G. W.; Nouh, S. A. Pani-Ag/PVA Nanocomposite: Gamma Induced Changes in the Thermal and Optical Characteristics. J. Vinyl Addit. Technol. 2021, 27, 47–53. DOI: 10.1002/vnl.21782.
  • Seoudi, R.; Shabaka, A. A.; Kamal, M.; Abdelrazek, E. M.; Eisa, W. H. Dependence of Structural, Vibrational Spectroscopy and Optical Properties on the Particle Sizes of CdS/Polyaniline Core/Shell Nanocomposites. J. Mol. Struct. 2012, 1013, 156–162. DOI: 10.1016/j.molstruc.2012.01.016.
  • Nouh, S. A.; Abou Elfadl, A.; Benthami, K.; Alhazime, A. A. Structural and Optical Characteristics of Laser Irradiated CdSe/PVA Nanocomposites. Int. Polym. Proc. 2019, 34, 255–261. DOI: 10.3139/217.3729.
  • Rakhshani, A. E. Study of Urbach Tail, Bandgap Energy and Grain-Boundary Characteristics in CdS by Modulated Photocurrent Spectroscopy. J. Phys. Condens. Matter 2000, 12, 4391–4400. DOI: 10.1088/0953-8984/12/19/309.
  • Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324–1324. DOI: 10.1103/PhysRev.92.1324.
  • Wahab, L. A.; Zayed, H. A.; Abd El-Galil, A. A. Study of Structural and Optical Properties of Cd1−xZnxSe Thin Films. Thin Solid Films 2012, 520, 5195–5199. DOI: 10.1016/j.tsf.2012.03.119.
  • Prasher, S.; Kumar, M.; Singh, S. Electrical and Optical Properties of O6þ Ion Beam–Irradiated Polymers. Int. J. Polym. Anal. Charact. 2014, 19, 204–211. DOI: 10.1080/1023666X.2014.879418.
  • Hamad, T. K.; Yusop, R. M.; Al-Taa’y, W. A.; Abdullah, B.; Yousif, E. Laser Induced Modification of the Optical Properties of Nano-ZnO Doped PVC Films. Int. J. Polym. Sci. 2014, 2014, 1–8. DOI: 10.1155/2014/787595.
  • Tauc, J. Optical Properties of Solids; Abeles, F., Ed.; Elsevier: Amsterdam, 1972; p 77.
  • Dongol, M.; El-Denglawey, A.; Abd El Sadek, M. S.; Yahia, I. S. Thermal Annealing Effect on the Structural and the Optical Propertiesof Nano CdTe Films. Optik 2015, 126, 1352–1357. DOI: 10.1016/j.ijleo.2015.04.048.
  • Aziz, S. B.; Abdullah, O. G.; Hussein, A. M.; Ahmed, H. M. From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers 2017, 9, 626. DOI: 10.3390/polym9110626.
  • Palija, T.; Dobi, J.; Jai, M. A Photochemical Method for Improvement of Color Stability at Polymer–Wood. Colloids Surf. B Biointerfaces 2013, 108, 152–157. DOI: 10.1016/j.colsurfb.2013.02.045.
  • Pawar, S. M.; Moholkar, A. V.; Kim, I. K.; Shin, S. W.; Moon, J. H.; Rhee, J. I.; Kim, J. H. Effect of Laser Incident Energy on the Structural, Morphological and Optical Properties of Cu2ZnSnS4 (CZTS) Thin Films. Curr. Appl. Phys. 2010, 10, 565–569. DOI: 10.1016/j.cap.2009.07.023.
  • Aziz, S. B.; Dannoun, E. M. A.; Tahir, D. A.; Hussen, S. A.; Abdulwahid, R. T.; Nofal, M. M.; Abdullah, R. M.; Hussein, A. M.; Brevik, I. Synthesis of PVA/CeO2 Based Nanocomposites with Tuned Refractive Index and Reduced Absorption Edge: Structural and Optical Studies. Materials 2021, 14, 1570. DOI: 10.3390/ma14061570.
  • Brza, M. A.; Aziz, S. B.; Anuar, H.; Al Hazza, M. H. From Green Remediation to Polymer Hybrid Fabrication with Improved Optical Band Gaps. Int. J. Mol. Sci. 2019, 20, 3910. DOI: 10.3390/ijms20163910.
  • Soylu, M.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Transparent CdO/n-GaN(0001) Heterojunction for Optoelectronic Applications. J. Phys. Chem. Solids 2015, 85, 26–33. DOI: 10.1016/j.jpcs.2015.04.015.
  • Bhavsar, V.; Tripathi, D. Study of Refractive Index Dispersion and Optical Conductivity of PPy Doped PVC Films. Indian J. Pure Appl. Phys. 2016, 54, 105–110.
  • Shams-Eldin, M. A.; Wochnowski, C.; Koerdt, M.; Metev, S.; Hamza, A. A.; Juptner, W. Characterization of the Optical-Functional Properties of a Waveguide Written by an UV Laser into a Planar Polymer Chip. Opt. Mater. 2005, 27, 1138–1148. DOI: 10.1016/j.optmat.2004.09.019.
  • Ranby, B.; Rebek, J. Photodegradation, Photooxidation and Photostabilization of Polymers: Principles and Applications; Rabek J. F., Ed.; Wiley: London, 1996; p 153.
  • Mudila, H.; Prasher, P.; Kumar, A.; Zaidi, M. G. H.; Verma, A. Effect of Temperature on the Polymerization and Optical Conductivity of Thin Flexible Polypyrrole/Starch Composites. J. Phys. Conf. Ser. 2020, 1531, 012105. DOI: 10.1088/1742-6596/1531/1/012105.
  • Ismail, A. M.; Mohammed, M. I.; El-Metwally, E. G. Influence of Gamma Irradiation on the Structural and Optical Characteristics of Li Ion-Doped PVA/PVP Solid Polymer Electrolytes. Indian J. Phys. 2019, 93, 175–183. DOI: 10.1007/s12648-018-1286-1.
  • Wemple, S. H.; DiDomenico, M. Optical Dispersion and the Structure of Solids. Phys. Rev. Lett. 1969, 23, 1156–1160. DOI: 10.1103/PhysRevLett.23.1156.
  • Wemple, S. H.; DiDomenico, M. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B 1971, 3, 1338–1351. DOI: 10.1103/PhysRevB.3.1338.
  • Timoumi, A.; Bouzouita, H.; Rezig, B. Characterisation and Wemple Didomenico Model of Indium Sulphide Thin Layers for Photovoltaic Applications. Aust. J. Basic Appl. Sci. 2013, 7, 448–456.
  • Safak, H.; Merdan, M.; Yuksel, O. F. Dispersion Analysis of SnS and SnSe. Turk. J. Phys. 2002, 26, 341.
  • Mahmoud, S. A.; Alshomer, S.; Tarawnh, M. A. Structural and Optical Dispersion Characterisation of Sprayed Nickel Oxide Thin Films. J. Mod. Phys. 2011, 2, 1178–1186. DOI: 10.4236/jmp.2011.210147.
  • Yous, B.; Berger, J. M.; Ferraton, J. P.; Donnadieu, A. Gap optique et indice de réfraction du silicium amorphe préparé par “chemical vapour deposition” entre 95 K et 673 K. Thin Solid Films 1981, 82, 279–285. DOI: 10.1016/0040-6090(81)90195-4.
  • Zhou, P.; You, G.; Li, J.; Wang, S.; Qian, S.; Chen, L. Annealing Effect of Linear and Nonlinear Optical Properties of Ag:Bi2O3 Nanocomposite Films. Opt. Express 2005, 13, 1508–1514. DOI: 10.1364/OPEX.13.001508.
  • Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G. Linear and Nonlinear Optical Properties of Nanostructured Zn(1−x)SrxO–PVA Composite Thin Films. Opt. Mater. 2014, 37, 42–50. DOI: 10.1016/j.optmat.2014.04.036.
  • Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G. Surfactant-Dependant Thermally Induced Nonlinear Optical Properties of L-Ascorbic Acid-Stabilized Colloidal GNPs and GNP–PVP Thin Films. RSC Adv. 2019, 9, 15502–15512. DOI: 10.1039/C9RA01598A.
  • Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G. Comprehensive Study of -Alanine Passivated Colloidal Gold Nanoparticles and GNP-PVP Thin Films: Linear Optical Properties and Very Large Nonlinear Refractive Index, Absorption Coefficient, Third-Order Nonlinear Susceptibility Measurements and Effect of Passivation. Opt. Mater. 2021, 121, 111458. DOI: 10.1016/j.optmat.2021.111458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.