111
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Polyvinylidene Fluoride (PVDF) Crystallization Kinetics in an Electric Field

&
Pages 738-754 | Received 22 Jun 2023, Accepted 03 Aug 2023, Published online: 18 Aug 2023

References

  • Yue, K.; Liu, G.; Feng, X.; Li, L.; Lotz, B.; Cheng, S. Z. D. A few rediscovered and challenging topics in polymer crystals and crystallization. Polym. Cryst. 2018, 1, e10053–e10070. DOI: 10.1002/pcr2.10053.
  • Mileva, D.; Tranchida, D.; Gahleitner, M. Designing polymer crystallinity: an industrial perspective. Polym. Cryst. 2018, 1, e10009–e10025. DOI: 10.1002/pcr2.10009.
  • Payal, R. S.; Sommer, J. U. Crystallization of polymers under the influence of an external force field. Polymers. 2021, 13, 2078–2093. DOI: 10.3390/polym13132078.
  • Liedel, C.; Pester, C. W.; Ruppel, M.; Urban, V. S.; Böker, A. Beyond orientation: the impact of electric fields on block copolymers. Macromol. Chem. Phys. 2012, 213, 259–269. DOI: 10.1002/macp.201100590.
  • Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter. 2014, 10, 3867–3889. DOI: 10.1039/c3sm52607k.
  • Freniere, J. M. J.; Roberge, E. J.; Halpern, J. M. Review—reorientation of polymers in an applied electric field for electrochemical sensors. J. Electrochem. Soc. 2020, 167, 037556–037564. DOI: 10.1149/1945-7111/ab6cfe.
  • Bae, J. Control of microdomain orientation in block copolymer thin films by electric field for proton exchange membrane. ACES. 2014, 04, 95–102. DOI: 10.4236/aces.2014.42013.
  • Böker, A.; Elbs, H.; Hänsel, H.; Knoll, A.; Ludwigs, S.; Zettl, H.; Zvelindovsky, A. V.; Sevink, G. J. A.; Urban, V.; Abetz, V.; et al. Electric field induced alignment of concentrated block copolymer solutions. Macromolecules. 2003, 36, 8078–8087. DOI: 10.1021/ma021347k.
  • Cho, C.; Jeon, J. W.; Lutkenhaus, J.; Zacharia, N. S. Electric field induced morphological transitions in polyelectrolyte multilayers. ACS Appl. Mater. Interfaces. 2013, 5, 4930–4936. DOI: 10.1021/am400667y.
  • Xu, S.; Liu, D.; Zhang, Q.; Fu, Q. Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos. Sci. Technol. 2018, 156, 117–126. DOI: 10.1016/j.compscitech.2017.12.017.
  • Xu, L. L.; Xu, Y.; Liu, L.; Wang, K. P.; Patterson, D. A.; Wang, J. Electrically responsive ultrafiltration polyaniline membrane to solve fouling under applied potential. J. Membr. Sci. 2019, 572, 442–452. DOI: 10.1016/j.memsci.2018.11.026.
  • Jeon, H. U.; Jin, H. M.; Kim, J. Y.; Cha, S. K.; Mun, J. H.; Lee, K. E.; Oh, J. J.; Yun, T.; Kim, J. S.; Kim, S. O. Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns. Mol. Syst. Des. Eng. 2017, 2, 560–566. DOI: 10.1039/C7ME00067G.
  • Chen, X.; Han, X.; Shen, Q. D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 2017, 3, 1600460–1600478. DOI: 10.1002/aelm.201600460.
  • Hung, C. H.; Lin, Y. L.; Young, T. H. The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. Biomaterials. 2006, 27, 4461–4469. DOI: 10.1016/j.biomaterials.2006.04.021.
  • Kang, G. D.; Cao, Y. M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes - a review. J. Membr. Sci. 2014, 463, 145–165. DOI: 10.1016/j.memsci.2014.03.055.
  • Xia, W.; Zhang, Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 2018, 1, 17–31. DOI: 10.1049/iet-nde.2018.0001.
  • Lovinger, A. J. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 793–809. DOI: 10.1002/pol.1980.180180412.
  • Koseki, Y.; Aimi, K.; Ando, S. Crystalline structure and molecular mobility of PVDF chains in PVDF/PMMA blend films analyzed by solid-state 19F MAS NMR spectroscopy. Polym. J. 2012, 44, 757–763. DOI: 10.1038/pj.2012.76.
  • Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and applications of the β phase poly(vinylidene fluoride). Polymers. 2018, 10, 228–255. DOI: 10.3390/polym10030228.
  • Horibe, H.; Sasaki, Y.; Oshiro, H.; Hosokawa, Y.; Kono, A.; Takahashi, S.; Nishiyama, T. Quantification of the solvent evaporation rate during the production of three PVDF crystalline structure types by solvent casting. Polym. J. 2014, 46, 104–110. DOI: 10.1038/pj.2013.75.
  • Lovinger, A. J. Crystalline transformations in spherulites of poly(vinylidene fluoride). Polymer. 1980, 21, 1317–1322. DOI: 10.1016/0032-3861(80)90200-1.
  • Osaki, S.; Kotaka, T. Electrical properties of form III poly(vinylidene fluoride). Ferroelectrics. 1981, 32, 1–11. DOI: 10.1080/00150198108238666.
  • Silva, M. P.; Sencadas, V.; Botelho, G.; Machado, A. V.; Rolo, A. G.; Rocha, J. G.; Lanceros-Mendez, S. α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater. Chem. Phys. 2010, 122, 87–92. DOI: 10.1016/j.matchemphys.2010.02.067.
  • Romanyuk, K.; Costa, C. M.; Luchkin, S. Y.; Kholkin, A. L.; Lanceros-Méndez, S. Giant electric-field-induced strain in PVDF-based battery separator membranes probed by electrochemical strain microscopy. Langmuir. 2016, 32, 5267–5276. DOI: 10.1021/acs.langmuir.6b01018.
  • Darestani, M. T.; Chilcott, T. C.; Coster, H. G. L. Separation performance of PVDF membranes poled in intense electric fields. Sep. Purif. Technol. 2013, 118, 604–611. DOI: 10.1016/j.seppur.2013.07.043.
  • Guo, H.; Li, X.; Wang, Z.; Li, B.; Wang, J.; Wang, S. Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field. Chin. J. Chem. Eng. 2018, 26, 1213–1218. DOI: 10.1016/j.cjche.2017.12.015.
  • Hartono, A.; Darwin, R.; Satira, S.; Djamal. M.; Herman. Electric field poling 2G V/m to improve piezoelectricity of PVDF thin film. AIP Conf. Proc., 2016, 1719, 300211–300214. DOI: 10.1063/1.4943716.
  • Ribeiro, C.; Costa, C. M.; Correia, D. M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V. F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681–704. DOI: 10.1038/nprot.2017.157.
  • Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. DOI: 10.1039/C7RA01267E.
  • Gregorio, R.; Ueno, E. M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J. Mater. Sci. 1999, 34, 4489–4500. DOI: 10.1023/A:1004689205706.
  • Tao, M.; Liu, F.; Ma, B. R.; Xue, L. X. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination. 2013, 316, 137–145. DOI: 10.1016/j.desal.2013.02.005.
  • Zhou, J.; Wang, H. The physical meanings of 5 basic parameters for an X-ray diffraction peak and their application. Chin. J. Geochem. 2003, 22, 38–44. DOI: 10.1007/bf02831544.
  • Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induced by tetrabutylammonium bisulfate. J. Polym. Res. 2014, 21, 616–624. DOI: 10.1007/s10965-014-0616-z.
  • Wang, H. J.; Feng, H. P.; Wang, X. C.; Du, Q. C.; Yan, C. Crystallization kinetics and morphology of poly(vinylidene fluoride)/poly(ethylene adipate) blends. Chin. J. Polym. Sci. 2015, 33, 349–361. DOI: 10.1007/s10118-015-1585-3.
  • Guan, Y.; Wang, S.; Zheng, A.; Xiao, H. Crystallization behaviors of polypropylene and functional polypropylene. J. Appl. Polym. Sci. 2003, 88, 872–877. DOI: 10.1002/app.11668.
  • Piorkowska, E.; Galeski, A. Overall Crystallization Kinetics. In Handbook of Polymer Crystallization; Ewa Piorkowska, G. C. R., Ed.; John Wiley & Sons: Hoboken, NJ, 2013; pp 215–235. DOI: 10.1002/9781118541838.ch7.
  • Zhang, M. C.; Guo, B. H.; Xu, J. A review on polymer crystallization theories. Crystals. 2016, 7, 4. DOI: 10.3390/cryst7010004.
  • Hinrichs, V.; Kalinka, G.; Hinrichsen, G. An Avrami-based model for the description of the secondary crystallization of polymers. J. Macromol. Sci. Part B Phys. 1996, 35, 295–302. DOI: 10.1080/00222349608220382.
  • Muller, A. J.; Michell, R. M.; Lorenzo, A. T. Isothermal Crystallization Kinetics. In Polymer Morphology: Principles, Characterization, and Processing; Guo, Q., Ed.; Wiley: Hoboken, 2016; pp 181–203. DOI: 10.1002/9781118892756.ch11.
  • Cai, J.; Liu, M.; Wang, L.; Yao, K.; Li, S.; Xiong, H. Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr. Polym. 2011, 86, 941–947. DOI: 10.1016/j.carbpol.2011.05.044.
  • Hoffman, J. D.; Miller, R. L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997, 38, 3151–3212. DOI: 10.1016/S0032-3861(97)00071-2.
  • Marand, H.; Xu, J.; Srinivas, S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman − Weeks extrapolations. Macromolecules. 1998, 31, 8219–8229. DOI: 10.1021/ma980747y.
  • Toda, A.; Taguchi, K.; Kono, G.; Nozaki, K. Crystallization and melting behaviors of poly(vinylidene fluoride) examined by fast-scan calorimetry: Hoffman-Weeks, Gibbs-Thomson and thermal Gibbs-Thomson plots. Polymer. 2019, 169, 11–20. DOI: 10.1016/j.polymer.2019.02.017.
  • Mashak, A.; Ghaee, A. Isothermal melt crystallization kinetic behavior of poly (vinylidene fluoride). J. Chem. Pet. Eng. 2015, 49, 21–29. DOI: 10.22059/jchpe.2015.9959.
  • Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S. Effect of an electric field on nucleation and growth of crystals. IOP Conf. Ser. Mater. Sci. Eng. 2016, 110, 012019. DOI: 10.1088/1757-899X/110/1/012019.
  • Panine, P.; Di Cola, E.; Sztucki, M.; Narayanan, T. Early stages of polymer melt crystallization. Polymer 2008, 49, 676–680. DOI: 10.1016/j.polymer.2007.12.026.
  • Tashiro, K.; Yamamoto, H. Structural evolution mechanism of crystalline polymers in the isothermal melt-crystallization process: a proposition based on simultaneous WAXD/SAXS/FTIR measurements. Polymers. 2019, 11, 1316–1341. DOI: 10.3390/polym11081316.
  • Kos, P. I.; Ivanov, V. A.; Chertovich, A. V. Crystallization of semiflexible polymers in melts and solutions. Soft Matter. 2021, 17, 2392–2403. DOI: 10.1039/d0sm01545h.
  • Zhang, J.; Huang, H. Rheological behavior of polymer melt in the electric field. J. Phys. Conf. Ser. 2008, 96, 012018. DOI: 10.1088/1742-6596/96/1/012018.
  • Kadimi, A.; Benhamou, K.; Ounaies, Z.; Magnin, A.; Dufresne, A.; Kaddami, H.; Raihane, M. Electric field alignment of nanofibrillated cellulose (NFC) in silicone oil: impact on electrical properties. ACS Appl. Mater. Interfaces. 2014, 6, 9418–9425. DOI: 10.1021/am501808h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.